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Abstract This work is concerned with an experimental and
theoretical study on compression properties of magnetorhe-
ological fluids under the nonuniform field. Experimental
tests of unidirectional monotonic compression were firstly
carried out under constant area operation using a com-
mercial plate–plate magneto-rheometer where the magnetic
field radial distribution was nonuniform. Normal forces
increased with decreasing of the gap distance, and two
regions were found through the normal force versus gap
distance curves: elastic deformation and plastic flow. High
normal forces could be obtained in the case of high magnetic
field, high compression velocity, low initial gap distance,
high volume fraction, and high medium viscosity. In the
plastic flow region, the normal force with the gap dis-
tance could be fitted with a power law relation FN ∝ hn,
and the index n was around well in the range (−3, −2).
Taking nonuniform magnetic field into account, the the-
oretical modeling in the plastic flow was then developed
to calculate the normal force under compression based on
the continuum media theory. Compared to the uniform
field, there existed a magnetic field gradient-induced normal
force under nonuniform field. Considering the sealing and
squeeze strengthening effect, the gap distance-dependent
shear yield stress was proposed, and a good correspon-
dence between the theoretical and experimental results was
obtained.
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Introduction

Magnetorheological (MR) fluids are suspensions of mag-
netic microparticles in a carrier fluid, which present dra-
matic changes in the rheological properties under magnetic
field. Because of their fast and reversible response, high
changeable shear yield stress, MR fluids have attracted
many attentions in many fields of science and engineering
(Ashour et al. 1996; Carlson and Jolly 2000; Bossis et al.
2002; Park et al. 2010; de Vicente et al. 2011a). As the
important parameter of MR fluid, high shear yield stress
of MR fluids is expected, since it means a smaller MR
device in the same output force. Therefore, compression or
squeeze mode of MR fluids has been considered recently,
as it has been proved that the compression mode of MR flu-
ids can provide higher yield stress than the direct-shear and
pressure-driven mode, which is similar to the reported stud-
ies using electrorheological (ER) fluids, an analogue of MR
fluid (Havelka and Pialet 1996; Chu et al. 2000; Tian et al.
2002a, b, 2003).

The first report on compression behaviors of MR fluids
is the squeeze strengthening effect (Tang et al. 2000; Zhang
et al. 2004). A higher yield stress could be obtained under
compression for the MR fluids, which was relative to the
formation of thick strong columns under compression and
friction effect between the particles. Similar to the ER flu-
ids, the investigation of the compression behaviors for the
MR fluids could be also divided into two categories. The
first one was the oscillatory compression mode, in which the
gap distance between the plates changed in sinusoidal mode,
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and the oscillatory amplitude was only a few percentage of
the initial gap distance. Kulkarni et al. (2003) studied the
hysteretic loops of the MR fluids under oscillatory squeeze
mode. The results indicated that the damping force and the
area of the hysteretic loop of MR fluids increased with
the current and strain amplitude. However, the introduction
of a squeeze component in shearing flows did not always
increase the strength of the MR fluid. Furthermore, Vieira
et al. (2003) found that the peak compressive force increased
with increasing of the cycle numbers. Well-pronounced hys-
teresis loops were observed by Gstöttenbauer et al. (2008),
and they exhibited characteristic kinks, which could not
be understood within the frame of elementary constitutive
laws. Finite element simulations were utilized to describe
the squeeze mode behavior. Farjoud et al. (2011, 2012) and
Zhang et al. (2011) did a great job to develop the practi-
cal MR squeeze mount. Besides, a clumping behavior was
observed during the oscillatory testing and a novel mathe-
matical solution for low shear rate squeezing flow of MR
fluids was made using perturbation techniques.

The other investigation method for the compression
mode was the unidirectional monotonous compression. The
reduction in the plate could be achieved to a large extent,
but the squeezing velocity was often limited to a small
constant value. By comparing the steady shear flow and con-
stant velocity squeezing flow behaviors of the MR fluid,
See (2003a) found that the mechanical response under
squeezing flow scaled as B0.91, whereas the response under
shearing scaled as B1.4. Mazlan et al. (2007, 2008) designed
a test rig to perform the constant velocity and area compres-
sion operation of MR fluids, and three regions were found
through the stress–strain curves, which was relative to the
relative movement between the particles and the carrier liq-
uid in the MR fluid. Similar tests were also conducted by
Wang et al. (2011), and the results showed that the MR
fluid was quite stiff at small compressive strains lower than
0.13. The compressive stress and the compressive modulus
increased quickly when the compressive strain was higher
than 0.2. To avoid the sealing effect under constant area
squeeze, de Vicente et al. (2011b), Ruiz-López et al. (2012)
investigated the unidirectional monotonic compression tests
of MR fluids under constant volume operation. They pro-
posed a unified description for the MR fluids in terms of a
continuous media theory for plastic materials. This allowed
them to collapse compression curves obtained for a wide
range of magnetic field strengths, medium viscosity, and
particle concentration. In addition, particle-level dynamic
simulations were made to capture the microstructure revo-
lution of MR fluid under compression.

Different from the electric field, the magnetic field distri-
bution with the radial direction produced by the coil is hard
to keep uniform. For all the reported self-assembled device
(Kulkarni et al. 2003; Vieira et al. 2003; Mazlan et al. 2007;

2008; Wang et al. 2011) and commercial setup (Laeuger
et al. 2005; Laun et al. 2008a; López-López et al. 2010;
Andablo-Reyes et al. 2011; Jonkkari et al. 2012), the radial
magnetic fields were not uniform, and the magnetic field
gradient always existed under a given current. The nonuni-
form field would change the properties of field-responsive
materials greatly; López-López et al. (2010) found that the
lack of homogeneity of the applied field could cause the
appearance of normal forces in MR fluids, and Andablo-
Reyes et al. (2011) discovered that the nonuniform field
could affect the lubrication behaviors of magnetic fluids.
Therefore, the compression properties of MR fluids are
inevitably affected by this nonuniform field. However, com-
pression behaviors of MR fluids under nonuniform field
have been not studied.

In this work, the compression properties of MR fluids
under nonuniform magnetic field were investigated by using
a commercial plate–plate rheometer. The influence factors
including magnetic field, compression velocity, initial gap
distance, volume concentration of iron particle, and the vis-
cosity of carrier fluid were systematically investigated in
the compression mode. Considering the nonuniform mag-
netic field, the theoretical model was carried out based on a
continuum media theory to calculate the normal force, and
the comparison between the nonuniform and uniform fields
was made. Besides, the gap distance-dependent yield stress
was utilized, and they showed good agreements with the
experimental results.

Experimental

MR fluids used in this study were prepared by mixing
carbonyl iron particles in silicone oil. The carbonyl iron
particles were purchased from BASF (model CN) whose
average particle size was about 6 μm. Silicone oil (H201)
was purchased from Sinopharm Chemical Reagent Co., Ltd.
Stearic acid (2 wt %) was added to improve sedimentary
stability. Various samples with different iron particle vol-
ume fractions (5–25 %) and viscosity of carrier fluid (10,
100, and 500 cSt) were prepared. The samples were vig-
orously shaken to ensure the required homogeneity before
measurements.

The commercial plate–plate magneto-rheometer (Phys-
ica MCR 301; Anton Paar, Austria) was used to test the
compression behaviors of MR fluids. The magnetic field
was applied normally to the sample plate via the magne-
torheological unit (Physica MRD 180). The normal force
was measured with a sensor built into air bearing, and it
could be recorded from −50 to 50 N with an accuracy
of 0.03 N. The rheometer axis stiffness was very large
(2 N/μm), and the distortion of the force sensor under
the pressures was neglected. The inertia of the plate tool
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Fig. 1 Schematic diagram of the constant area compression
experiment

was also ignored. The plates were assumed to be per-
fectly parallel, even though a small misalignment existed
(Andablo-Reyes et al. 2011; Gong et al. 2012), as it was so
small compared to the gap distance.

The schematic diagram of the compression test is shown
in Fig. 1. During compressing, the lower plate is station-
ary, while the upper plate moves close to it with a constant
velocity, and MR fluids are pushed out. It should be noted
that the upper plate is not an ideal cylindrical plate, and
there is an additional guard ring. To keep a constant area,
the extrusive MR fluids cannot touch the guard ring. In the
initial state, the MR fluid is fully filled between the mid-
dle surface of the upper and lower plates. The radius and
height of the sample is R (10 mm) and h0. When the MR
fluid just can touch the guard ring, the radius and height of
the sample is Rg (13 mm) and h1. During compressing, the
volume of sample keeps constant, that is πR2h0 = πR2

gh1

(supposing the sample is the cylinder). We define the com-
pression strain as the ratio of the moving distance of the
upper plate to the initial distance between the plates as fol-
lows: εc = (h0−h(t))/h0, where h(t) is the transient height
during compressing. Therefore, a maximum compression
strain cannot exceed the value of 0.408.

The distribution of the magnetic field in the measuring
gap for each given electric current is not uniform, and a
nonnegligible gradient along the radial coordinate exists.
Figure 2 represents the magnetic field distribution in the
testing gap as a function of radial distance without sam-
ple. The middle magnetic field is smaller than that in the
neighborhood as a central hole exists to pass through the
rheometer shaft. The field distribution for the different sam-
ple is a little different, but the field gradient always exists.
Obviously, the magnetic field will be changed as the gap
distance decreases. This small change for magnetic field has
been ignored, and the magnetic field distribution is thought

as a constant value during compressing. During the testing
process, the radial field gradient exists, and the mentioned
magnetic flux density in this paper refers to the maximum
plateau value corresponding to radial magnetic flux density
profiles.

Compression measurements were carried out as follows:
(1) samples were placed between the parallel plates with a
syringe, and different initial gap distances demanded dif-
ferent volume samples. (2) The external magnetic field was
suddenly applied for 60 s, while the sample kept stationary
which was long enough to allow the aggregates to form. (3)
The compression test was started at a constant approaching
speed in the presence of the nonuniform magnetic field. All
the tests were repeated for three times to guarantee the valid-
ity of the results (every testing result almost overlapped in
one line, and the relative error was less than 1 %), and the
testing temperature was set at 25 ◦C.

Results

The general feature of normal force tested under the
nonuniform magnetic field

Firstly, the compression tests were carried out without
applying magnetic field, which indicated that all the nor-
mal force was less than 0.1 N; thus, it was discarded for
brevity. Then, experimental tests were conducted under con-
stant current to test the magnetic-dependent normal force.
Here, it should be noted that all the tests were under the
nonuniform field with the steady field distribution. Figure 3
shows a typical behavior of a normal force of MR fluid
under compression with the gap distance and strain. Though
the MR fluid is not subject to any deformation after apply-
ing a magnetic field, the positive normal force generates
(3.38 N) and pushes the plates apart, which is marked by
the red star in Fig. 3. The static normal force has been

Fig. 2 The magnetic field distribution in the testing gap as a function
of radial distance
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studied by many researchers (See and Tanner 2003b; Laun
et al. 2008b; López-López et al. 2010; Gong et al. 2012),
and it originates from the squeezing of magnetized spheres
into existing chains. The static normal force FNS is mainly
dependent on the magnetic field B by the power law relation
FNS ∝ Bk , where k is about 2. In modeling the normal force
under compression, this static field should be included. It
should be also noted that the initial gap becomes a little
larger (it increases from 0.625 to 0.627 mm) as this static
normal force causes the rheometer axis distortion.

Fig. 3 Normal force of MR fluid versus a gap distance in lin–lin
plot, b strain in lin–lin plot, and c gap distance in log–log plot under
compression. The particle volume fraction of MR fluid is 10 %, the
viscosity of silicone oil is 100 cSt, the squeeze speed is 10 μm/s, the
initial gap distance is set at 0.625 mm, and the magnetic field is 0.46 T

The compression process could be divided into two
regions: elastic deformation and plastic flow. At the elas-
tic region, the particle chains or columns in the MR fluid
keep intact without breaking. It bears the loading force by
the elastic deformation of the particles. The normal force
increase steeply from 3.38 to 8.45 N as the gap distance
decreases or the stain increases to the critical value. The
critical gap distance and strain is 0.622 and 0.008 mm,
respectively. The further decreasing of the gap distance
makes the MR fluid enter into the plastic flow. The parti-
cle chains structure collapses at a critical stress level and
then immediately forms a metastable structure again. This
process repeats as the compression proceeds and the nor-
mal forces increase slowly at first and then increase quickly
to 29.8 N with decreasing of the gap distance (0.386 mm)
or increasing of the strain (0.384). Besides, the increasing
normal force with fluctuation can be found, which agrees
well with the experimental (Chu et al. 2000) and simu-
lated (Lukkarinen and Kaski 1998; de Vicente et al. 2011b)
results. The fluctuation normal force is the macroscopic
manifestation of the repeated microstructure in this plastic
flow region. During this process, the average normal stress
τN (defined by τN = FN/A, where A is the area of the
plate) changes from 10.8 to 94.8 kPa, and the compressive
yield stress (the transformation normal stress from the elas-
tic region to the plastic region) is about 26.9 kPa which is
much larger than the shear yield stress of 3.5 kPa (the shear
yield stress is obtained by shear stress–shear rate plots and
not shown here for brevity).

In the plastic flow region, the normal force (FN) with the
gap distance (h) can be fitted with a power law relation,
which is FN ∝ hn. In the log–log graph (Fig. 3c), a linear
line with a slope of −2.4 is well used to capture the normal
force with the gap at a constant field. The field-responsive
fluid is usually regarded as homogenous material and mod-
eled as simplified Bingham (Covey and Stanmore 1981; de
Vicente et al. 2011b; Ruiz-López et al. 2012) or bi-viscous
fluid (Lipscomb and Denn 1984; Gartling and Phan-Thien
1984; Williams et al. 1993). The continuum media theory
shows that the normal forces vary with the gap distance in a
power law relation. In the previous works, different power
law indexes have been obtained (Meng and Filisko 2005;
Lynch et al. 2006; McIntyre and Filisko 2010), and there
exist some reasons to explain it. First, the field-responsive
fluids are two-phase fluids consisting of particle aggregates
immersed in a continuous liquid phase, not homogenous
material. Second, the Bingham or bi-viscous model cannot
fully describe the field-responsive fluid behaviors. Third,
sealing effect exists, and it will increase the particle con-
centration of field-responsive fluid. Fourth, the squeeze
strengthen effect will increase the yield stress of field-
responsive fluid. Fifth, the slip may happen during the tests.
These will be considered and discussed in detail later.
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Magnetic field effect

Compression properties of MR fluids are highly dependent
on the magnetic field (B). It should be remarked that mag-
netic field changes a little with the gap distance. Jonkkari
et al. (2012) found that when the gap distance of the rheome-
ter changed from 1.0 to 0.25 mm; the field decreased less
than 4.5 % of the average field. The magnetic field may be
regarded as constant value as the gap distance decreases,
which is very different from the ER fluid whose field will
increase greatly with decreasing of the gap distance when
the constant voltage is applied. Different magnetic fields
from 0.23 to 0.88 T are applied to show the field effect
(Fig. 4). Under every given field distribution, the general
feature of normal forces under compression can be found
obviously. At the same gap distance, the normal force of MR
fluid at high magnetic field is larger than that at low field,
which is the typical MR effect. The increasing magnetic
field strengthens the MR effect and the compressive stress
of MR fluid. The compressive yield stress will be enhanced
from 16.1 to 29.8 kPa as the magnetic field increases from
0.23 to 0.88 T. As magnetic field increases, the attractive
force between the particles in the MR fluids increases; thus,
the stronger chains which can bear larger loading force
will form. Similar results have been obtained in previous
researches (Mazlan et al. 2007, 2008; Wang et al. 2011;
de Vicente et al. 2011b, Ruiz-López et al. 2012). However,
the compressive yield stress does not show a quadratic rela-
tion with the magnetic field at high magnetic field as the
magnetic saturation of the particle occurs.

In addition, the power law relation fitting is conducted for
different fields, and the index changes between −2.40 and
−2.59. Clearly, it does not always increase with increasing
of the magnetic field, and at high magnetic field, it always
keeps a minimum value. The similar phenomena can be
found for other samples and compression conditions. Under

Fig. 4 Normal forces with gap distance under different magnetic
fields. The particle volume fraction of MR fluid is 10 %, the viscosity
of silicone oil is 100 cSt, the squeeze speed is 10 μm/s, and the initial
gap distance is set at 0.625 mm

a high magnetic field, the sealing effect will be more obvi-
ous, and more oil without particles would be squeezed out
(Ismail et al. 2012). The particle concentration will increase
and make the normal force grow faster during compressing.

Compression velocity effect

Figure 5 shows the effect of compression velocity (V ) on the
MR fluid compression behavior. Four small velocities from
2 to 20 μm/s are tested (compressive rate range, 0.001–0.04
s−1), and they are also believed to be quasi-static compres-
sion. At the same gap distance, the normal force increases as
the compression velocity increases. The compressive yield
stress is increased by a factor of 1.6 when the velocity
changes from 2 to 20 μm/s. This is different from what has
been found by McIntyre and Filisko (2010) for ER fluid
under constant volume compression. They thought that the
normal force of ER fluid decreased with increasing of the
squeezing velocity. As in the filtration region, the recon-
struction of particle structures would occur at an increasing
rate as the compression speed decreased, and the stronger
structures were formed at slower speeds. In the case of the
MR fluids, these small compression velocities are much
lower than the reconstruction rate of particle structure, and
they have no much influence on the reconstruction of parti-
cle. As the compression velocity increases, the viscous drag
force (fD = 3πηDpVp, where Dp and Vp are the diame-
ter and velocity of the particle, respectively) acting on the
particles from carrier fluid becomes large, and larger nor-
mal force is needed to break the chains. Thus, the normal
force increases with the increasing velocity. In addition, the
compression velocity not only affects the normal force but
also changes the power law index. The index decreases from
−1.94 to −2.57 with the increased compression velocity
from 2 to 20 μm/s. The normal forces increase faster at the
high velocity than those at small high velocity.

Fig. 5 Normal forces with gap distance under different compression
velocities. The particle volume fraction of MR fluid is 10 %, the vis-
cosity of silicone oil is 100 cSt, the initial gap distance is 0.625 mm,
and the magnetic field is 0.46 T
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Fig. 6 Normal forces with compression strain under different initial
gap distances. The particle volume fraction of MR fluid is 10 %, the
viscosity of silicone oil is 100 cSt, the squeeze speed is 10 μm/s, and
the magnetic field is 0.46 T

Initial gap distance effect

Different initial gap distances (h0 = 0.45, 0.625, and 0.8
mm) are tested to study the effect on the MR fluid com-
pression behavior (Fig. 6). The normal force–strain plot is
shown here in order to compare the normal force more
directly. Obviously, smaller gap distance generates larger
normal force at the same strain. The particle chains in
the MR fluid can be seen as slim rods. According to the
mechanics of compressing slim rods, the rod strength PL

is determined by the rod length l and rod diameter D by
the following equation: PL = kGD2/l2, where kG is a
material parameter, which should be tightly related to the
particle interactions (Timoshenko and Young 1968; Tian
et al. 2003). The diameter of the chain varies with the length
as D ∼ ls(s < 1), where the value of s can be different for
magnetically saturated particles and magnetically unsatu-
rated particles (Zhou et al. 1998). Thus, the rod strength has
a relation with the length as PL ∼ l−2(1−s). As the gap dis-
tance increases, the chain capacity of bearing loading force
would weaken, and the normal force decreases. Besides, the
power law index increases a little as the initial gap distance
decreases. Obviously, for the high-concentration MR fluids,
the particles form a more intricate network, but not sim-
ple chain or column. However, the rod buckling theory can
also be utilized to explain the normal force with initial gap
distance qualitatively.

Particle volume concentration effect

Compression behaviors for MR fluids with different parti-
cle concentration (ϕ) are compared in Fig. 7. The particle
volume concentration increases from 5 to 25 %, and higher-
concentration sampler has not been tested because the nor-
mal forces exceed the instrument test range (50 N). At the

Fig. 7 Normal forces with gap distance for different particle volumes.
The viscosity of silicone oil is 100 cSt, the initial gap distance is 0.45
mm, the squeeze speed is 10 μm/s, and the magnetic field is 0.23 T

same gap distance, the normal force increases as the par-
ticle concentration increases. It is easy to understand that
as the volume concentration of the iron particles increases,
the interparticle distance decreases, which can enhance the
particle interaction. Therefore, larger attractive force will
be achieved among the particles, which enables the forma-
tion of more rigid structures in the suspension. They give
rise to higher normal stresses as the particle volume con-
centration increases. The similar results have been obtained
by de Vicente et al. (2011b), Ruiz-López et al. (2012). As
shown in Fig. 8, the compressive yield stress increases from
1.6 to 31.8 kPa as the volume fraction increases from 5
to 25 %, which is a more clear evidence for the formation
of stronger structures in more concentrated suspensions.
Besides, the compressive yield stress increases proportion-
ally with the volume fraction, which is τCY ∝ ϕ. The similar
phenomenon also has been found for the shear yield stress
with the volume concentration at the small concentration,
but this relation is different from what have been obtained
by Ruiz-López et al. (2012), where the experiments were
made under constant volume squeeze flow.

Fig. 8 Compressive yield stress varies proportionally with the volume
fraction
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The variation of the power law indexes of the low-
concentration MR fluids from 5 to 20 % is small, and the
index value changes between −2.8 and −2. However, for
the 25 % MR fluid, the index reaches as low as −4.36,
which is much smaller than those above. The normal force
of the high-concentration MR fluid increases faster than the
low-concentration sample. During compressing, the seal-
ing effect will increase the particle concentration of MR
fluid residues in the plate. The high-concentrated MR fluid
will become even more concentrated with decreasing of
the gap distance. It will enhance the interparticle force and
form stronger particle structure, which greatly enhance the
normal force.

Viscosity effect

The effect of viscosity (η) of carrier fluid on the com-
pression behaviors of MR fluids is also studied in Fig. 9.
Silicon oil with three viscosities of 10, 100, and 500 cSt was
adopted, and MR fluid with larger viscosity will produce
the normal force beyond the testing range. The normal force
increases greatly as the viscosity of carrier fluid increase at
the same gap distance, which is similar to the results (Ruiz-
López et al. 2012). For example, the normal force increases
from 10.66 to 29.16 N when the viscosity of the carrier fluid
increases from 10 to 500 cSt at the gap distance of 0.5 mm.
For MR fluids with carrier fluid of high viscosity, larger
force will be needed to surpass the viscous drag force and
the magnetic attractive force to break the formed particle
structure, which means that the high viscosity carrier fluid
can sustain the particle structure more effectively.

The power law index decreases with increasing of the
viscosity of the carrier fluid, which is related to the seal-
ing effect. During compressing, the particle and oil are both
squeezed out, but high viscosity carrier fluid will take more
particles, and it will decrease the changing of the particle

Fig. 9 Normal forces with gap distance for different viscosities of
carrier fluid. The particle concentration is 10 %, the initial gap distance
is 0.625 mm, the squeeze speed is 10 μm/s, and the magnetic field is
0.23 T

concentration for the MR fluid in the plate. So, the particle
concentration for MR fluid with the high-viscosity carrier
fluid is smaller than that with low-viscosity carrier fluid,
and the normal force will increase slowly. It also shows that
MR fluid with low-viscosity carrier fluid has more obvious
sealing effect.

To sum up, the compressive stress is much larger than the
shear stress, which makes MR fluid have great potential in
vibration isolation. The fluctuation normal force under com-
pressing would be harmful to vibration control and should
be inhibited. High magnetic field, high compression veloc-
ity, low initial gap distance, high particle concentration, and
high viscosity of carrier fluid would generate larger normal
forces. Two regions were found through the normal force
versus gap distance curves: elastic deformation and plas-
tic flow. In the plastic flow region, the normal force with
the gap distance could be fitted with a power law relation
FN ∝ hn, and the index n was around well in the range
(−3, −2).

Discussion

Comparison under the uniform and nonuniform fields

The compression flow of inelastic yield stress fluids
was firstly studied by Scott (1929). Later, Covey and
Stanmore (1981) reported the theoretical results by employ-
ing Bingham constitutive equation and the lubrication
approximation; though their theoretical works were in some
conflict with regard to the flow pattern produced in the
geometry, they can provide the accurate and useful first-
order estimate for the velocity field (Lipscomb and Denn
1984; Engmann et al. 2005). Furthermore, Gartling and
Phan-Thien (1984) utilized a bi-viscous mode to carry out
the theoretical analysis, and then Williams et al. (1993)
adopted this method to calculate a time-dependent sinu-
soidal squeeze flow theory for ER fluids. Besides, de
Vicente et al. (2011b), Ruiz-López et al. (2012) have proven
the validity of continuous media theory for Bingham plastic
material in MR fluids under slow compression. Following
these methods, the theoretical model is developed taking
magnetic field distribution into account.

In this case, the Reynolds number Re = hoVρ/η (where
the characteristic length scale is the initial gap distance h0;
the characteristic velocity is chosen to be the squeezing
velocity of the upper plate V , ρ and η is the density and
viscosity of MR fluid, respectively) is an order of 10−4 and
is much less than 1; lubrication and creeping flow approx-
imations can be used. Besides, as the gap distance is small
compared to the radius of the plate (R > 10 h), the normal
component is neglected. Because of circular symmetry, the
θ component is zero. The momentum balance equation in
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cylindrical coordinate (r , θ , and z) can simplify just in the r

component as follows:

−∂p

∂r
+ ∂τrz

∂z
+ μ0Mr

∂Hr

∂r
= 0 (1)

where p is the total pressure, τrz is the shear stress, Mr is
the fluid magnetization in the r component, and μ0 is the
vacuum magnetic permeability. The added third part of the
left side of the equation is a magnetic body force arising
from the radial magnetic field distribution Hr (Rosenweig
1997; López-López et al. 2010; Andablo-Reyes et al. 2011).

The bi-viscous model is chosen to represent constitu-
tive relation for the plastic flow. Later, it can be seen
that it would not affect the result too much compared to
Bingham model. The bi-viscous model is given by the
following equations:

τ (H) = τ0 (H) + η
∂Ur

∂z
, for τ 2 > τ 2

1 (2a)

τ (H) = ηr

∂Ur

∂z
, for τ 2 < τ 2

1 (2b)

There are two shear stress τ0 and τ1, and τ1 is the shear
yield stress. η is the slope of the shear stress–shear rate
curve above the yield point, and ηr is a viscosity param-
eter which is assigned to the fluid below yield. Ur is the
fluid velocity. A new dimensionless parameter, the viscos-
ity ratio, is defined by ε = η/ηr . Besides, τ0 = τ1(1 − ε)

can be obtained. The Bingham model is approached in the
limit ε → 0.

Because of symmetry, restricting attention is paid to the
region 0 < z < h/2, 0 < r < R. Equation (1) can be
rewritten as follows:

∂

∂z
τ = ∂p

∂r
− μ0Mr

∂Hr

∂r
= 
(r) (3)

Generally 
(r) < 0. According to the boundary condition
z = h/2, τ = 0, and integrating Eq. (3) with respect to z

produces the following equation:

τ = 
(r)

(
z − h

2

)
(4)

From τ = τ1, we get zy = h
2 +τ1


−1(r) which describes the
vertical location of the boundary separating yielded material
(0 < z < zy) from unyielded material (z < zy < h/2).
Equations (2a) and (4) can be combined and integrated (no
slip condition z = 0; Ur = 0) with respect to z to produce a
velocity profile for the yielded material as follows:

Ur1 = 1

2η

 (r) (z − h) z − τ0 (H)

η
z, 0 ≤ z ≤ zy (5)

Similarly, the velocity of the unyielded material, Ur2, which
is found by combining Eqs. (2b) and (4) and integrating
with respect to z. The constant of integration is found by

matching the velocities Ur1 and Ur2 at the yield surface
z = zy . It produces the result as follows:

Ur2 = 1

2ηr


 (r) (z − h) z

+
(

1

2η
− 1

2ηr

)

(r)

(
Zy − h

)
Zy

− τ0 (H)

η
Zy, Zy ≤ z ≤ h

2
(6)

Taking a mass balance over a cylinder confined by a radius
r and the planes z = 0, z = h/2, we have π r2d(h

2 )/dt =
2π r

∫ h/2
0 Urdz. In constant velocity squeeze, it can be

rewritten as follows:

rV

4
=

∫ h/2

0
Urdz =

∫ Zy

0
Urdz +

∫ h/2

Zy

Urdz (7)

Combining this with Eqs. (5) and (6) gives an expression for

(r), i.e., as follows:

ηrh
3
3 + 3ηrτ0h

2
2 + 6ηηrrV 
2 − 8ητ 3
1 − 12ηrτ0τ

2
1

+ 8ητ 3
1 = 0 (8)

The dimensionless parameters X (analogue of the dimen-
sionless pressure gradient) and S (modified plasticity num-
ber) are introduced as follows:

X = − h

2τ1

, S = rηV

h2τ1
(9)

The expression then becomes the following equation:

X3 − 3

(
S + 1

2

)
X2 + 1

2
= ε

(
1

2
− 3

2
X2

)
(10)

This expression is very similar to those obtained by
Williams et al. (1993), and the only difference is that the
dimensionless parameter X includes the contribution from
the magnetic field. The exact solution of Eq. (10) could
be acquired by the mathematical software, but it is very
tedious and complicate, which cannot give the straightfor-
ward understanding. In order to directly show the effect
of the magnetic field distribution on the normal force, the
approximate solution is developed. For the MR fluid, the
viscosity ratio ε ∼ 10−4 < 1, and Eq. (10) can be simplified
as follows:

X3 − 3

(
S + 1

2

)
X2 + 1

2
= 0 (11)

It is the result obtained by Bingham model. Bingham and
bi-viscous models have no too much difference in this case
for the MR fluid. Besides, zy = h

2 +τ1ϕ
−1(r) > 0 is needed

in physics; so, X = − h
2τ1

ϕ > 1. The plastic number for the
MR fluid is less than 0.05, and the solution of Eq. (11) can
be obtained by the following equation:

X = 1 + √
2S (12)
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Substituting it by Eq. (9), it produces the following
expression:

∂p

∂r
= −2τ1 (H)

h
− 2τ1 (H)

h2

(
2rηV

τ1 (H)

)1/2

+ μ0Mr

∂Hr

∂r

(13)

Then, neglecting the atmosphere pressure and integrating
the pressure over the total plate area gives the following
expression:

FN =
∫ R

0
2πp (r)rdr = −π

∫ R

0

∂p (r)

∂r
r2dr

= 2π

h

∫ R

0
τ1 (H)r2dr + 2π

h2 (2ηV )1/2

×
∫ R

0
τ

1/2
1 (H)r5/2dr − π0μ0

∫ R

0
Mr

∂Hr

∂r
r2dr

(14)

If the magnetic field is constant along the radial displace-
ment, the compression normal force can be obtained as
follows:

FN = 2πτ1R
3

3h
+ 4π

7h2

√
2τ1ηV R7 (15)

It should be noted that the forces in the Eqs. (14) and (15) do
not contain the static normal force FNS. The biggest differ-
ence between uniform [Eq. (15)] and nonuniform magnetic
field [Eq. (14)] is the magnetic field gradient-induced nor-
mal force, which is the third part of the left side of Eq. (15).
Here, Mr is the r component of the fluid magnetization. The
MR fluid is considered as an anisotropic medium, and the
magnetization is a function of magnetic field Mr = χrzHzz,
where Hzz is the z component of applied magnetic field
(Hrr = Hθθ = 0), and χrz is the magnetic susceptibility of
the fluid. The chains or columns formed in the fluid will
be coarsening during compressing. Thus, the magnetic sus-
ceptibility will be changed. If the change is ignored, the
magnetic susceptibility χrz is regarded as a constant value.
Moreover, the magnetic field distribution is also considered
as the steady value with decreasing of the gap distance,
so the force produced by third part due to the field gradi-
ent will keep a steady value during compressing, which is
independent on the gap distance h.

The other difference between the uniform and nonuni-
form field is the shear yield stress along the radial dis-
placement. The shear yield stress is a function of magnetic
field, and it is a constant value for the different radial
displacements under uniform magnetic field. However, the
magnetic field along the radial displacement is different
under nonuniform field; the shear stress cannot keep con-
stant, and integration for the normal force is needed. For
the 10 % MR fluid with 100 cSt, the normal forces in
the nonuniform and uniform field are compared. The shear

stress is measured with the plate–plate magneto-rheometer
under different fields, and Bingham model is used to fit the
data. The shear stress–shear rate curves show that the initial
viscosity of the fluid is 0.24 Pa/s, and the shear yield stress
with magnetic field is fitted with polynomial function τ1

(B) = 4,680.8B3 − 12,537B2 + 12,595B − 11.617. Sup-
posing χrz is 1 and neglecting the static normal force, the
normal forces from Eqs. (14) and (15) can be calculated by
the following expressions:

FN (N) = 7.658

h (mm)
+ 0.023

h2 (mm)
+ 0.34, nonuniform field

(16)

FN (N) = 7.74

h (mm)
+ 0.024

h2 (mm)
, uniform field (17)

The magnetic field distribution comes from the Fig. 1b of
the paper by López-López et al. (2010). As shown in Fig. 10,
the normal forces calculated under nonuniform and uniform
field and experimental results are compared in the plastic
region. The indexes in the nonuniform and uniform field
are slightly different, both around −1.0. The normal forces
under nonuniform field are larger than those in uniform
field, as it produces the magnetic field gradient-induced
force. In order to obtain the accurate normal force under
compression, it is very necessary to consider the nonuniform
field, especially at the condition where the magnetic field
changes sharply. However, the calculated and experimental
values do not agree well. On the one hand, the calculated
initial normal force is larger than the experimental one,
which may arise from the shear yield stress measured by
the rheometer under nonuniform field. A local distinct max-
imum of magnetic flux density at the sample rim gives
rise to ponderomotive forces, which make the carbonyl iron
particle migrate towards the maximum of the flux density.

Fig. 10 Comparison of normal forces between the experimental and
theoretical results. The particle volume fraction of MR fluid is 10 %,
the viscosity of silicone oil is 100 cSt, the squeeze speed is 10 μm/s,
the initial gap distance is set at 0.625 mm, and the magnetic field is
0.46 T
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This particle migration will cause a radial profile of parti-
cle concentration, exhibiting a distinct maximum at the rim
and further increase the shear stress. That is, the measured
shear yield stress is much larger than the true yield stress
(Laun et al. 2008a, b), which makes the calculated initial
normal force larger than the experimental value. Besides,
the particle migration will also change the homogeneity and
compression behavior of MR fluid.

On the other hand, the index of the normal force with the
gap distance for theory and testing is also different. Obvi-
ously, the compression forces are predominated by the shear
yield stress, and viscous force has little contribution. The
Eqs. (16) and (17) can be both approximated as FN ∝ h−1.
In this case, this theoretical value of about −1 is much
larger than the experimental value of −2.40 for the index of
power law relation. There must be another reason to lead the
deviation.

Gap distance-dependent shear yield stress

The huge difference between the theoretical and experimen-
tal values may also come from the shear yield stress, which
is regarded as the gap distance-independent value during the
above calculation. However, there exist two influencing fac-
tors changing the yield stress during compressing: sealing
effect and squeeze strengthening effect. First, the sealing
effect will happen (Chu et al. 2000; Meng and Filisko 2005;
Lynch et al. 2006; McIntyre and Filisko 2010) and increase
the volume concentration of the particle which leads the
increasing of the shear yield. Both microscopic and macro-
scopic models predict that the yield stress is proportional
to the volume fraction of particle loading at lower volume
fraction, which is τy ∼ ϕ (Shulman et al. 1986; Ginder
and Davis 1994). At higher volume fraction, the yield stress
increases faster. For most practical MR fluids which have a
high volume fraction, the relationship of the yield stress and
volume fraction is usually represented by a power law τy ∼
ϕm (m = 1.52) (Carlson 2005). At the extreme condition,
only the clean oil is expelled out, while the iron particles
fully stay between the plates under compression. The vol-
ume fraction for the MR fluid in the plate can be calculated
as ϕ = h0ϕ0/h (ϕ0 is the initial volume fraction). There-
fore, the yield stress increase with decreasing of the gap
distance, and the relation between them can be expressed
as τy ∼ h−α , where α is related to the sealing effect. Sec-
ond, the squeeze strengthening effect would increase the
shear stress. Tang et al. (2000) have proposed that the yield
stress increases proportionally with increasing of the nor-
mal stress, that is τy ∝ Pe, in which the Pe = FN/A is the
normal stress loading on the MR fluid. The normal force
under compression increases with decreasing of the gap dis-
tance, so the normal stress loading on the MR fluid will
increase, and this will lead to the increasing of the shear

yield stress. In this case, the gap distance-dependent squeeze
yield stress may be simplified as τy = τy0(h0/h)β , where
τy0 is the yield stress of MR fluid without compression, and
β is relative to the squeeze strengthening effect. Therefore,
the shear yield stress will increase with decreasing of the
gap distance.

During compressing, the squeeze strengthening effect
on increasing the yield stress will always exist, and the
sealing effect can also happen, but not always at the
extreme condition (the iron particle will be squeezed par-
tially). Neglecting the viscous effect and substituting the
gap distance-dependent shear yield stress into the normal
force expression under uniform field gives the following
expression:

FN ∈
[

A

h1+β
,

B

h1+α+β

]
(18)

where A and B are constant values, which relative the
compression material and conditions. The normal force is
decided by these two effects, but the determinate normal
force which is very hard to be decided as the degree of
the sealing effecting is unknown. Thus, the normal force
will be in the range of two extreme conditions: homogenous
compression (oil and particle are not separated, and both
of them are squeeze out proportionally) and extreme com-
pression (oil and particle are fully separated, and only oil is
squeezed out).

In the certain condition, the sealing effect and squeeze
strengthening effect play determinate roles. Thus, the nor-
mal force will linearly change with the gap distance in the
log–log plot, and a constant index of power law relation
will be acquired. As the compression condition changes, the
index will change in the range of [−(1 + β), −(1 + α +
β)]. For example, as shown in Fig. 4, the index will change
as the magnetic field increases. It is because that the sealing
effect will be changed under various magnetic fields. As the
magnetic field increases, the iron particle attractive force is
increased, and it makes the particle hard to be squeezed out.
The sealing effect will be more severe at high field, and the
index will become much smaller than that at low field.

Conclusions

This work studied the normal force of MR fluids under
compression by a commercial plate–plate rheometer, where
the magnetic field along the radial displacement is nonuni-
form. The normal stress of MR fluids under compression is
larger than that in shear or valve mode, and it increases with
decreasing of the gap distance. The gap distance-dependent
normal force of MR fluid can be divided into two regions:
elastic deformation and plastic flow. The normal force with
the fluctuation is found at the plastic flow region. A power
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law relation FN ∝ hn is utilized to capture the normal force
with the gap distance in this region. The index of the power
law relation is around well in the range (−3, −2) and will
change a little with different MR samples and compression
conditions. High magnetic field, high compression veloc-
ity, low initial gap distance, high volume fraction, and high
medium viscosity will produce large normal force at the
same gap distance or strain during the compressing.

Based on the continuum media theory, the theoretical
model is developed to calculate the normal force under the
nonuniform field. Compared to that under uniform field,
the magnetic field gradient-induced normal force cannot be
neglected. The shear yield stress along the radial displace-
ment will also be changed under the nonuniform field. How-
ever, the index of the power law relation obtained by the
experimental result is much smaller than that by the theoret-
ical prediction. Considering the sealing effect and squeeze
strengthening effect, the gap distance-dependent shear yield
stress is proposed to calculate the normal forces. A range
is obtained for the normal force between the homogenous
and extreme compression, and good agreement is obtained
between the experimental and theoretical results.
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