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An abrupt drop phenomenon of magneto-induced normal stress of magnetorheo-
logical plastomer is reported and a microstructure dependent slipping hypothesis is
proposed to interpret this interesting behavior. For polyurethane based magnetorhe-
ological plastomer sample with 70 wt.% carbonyl iron powder, the magneto-induced
normal stress can reach to as high as 60.2 kPa when a 930 mT magnetic field is
suddenly applied. Meanwhile, the normal stress shows unpredicted abrupt drop. Par-
ticle dynamics is used to investigate the physical generating mechanism of normal
stress. The simulation result agrees well with the experimental result, indicating
that the interior microstructure of iron particle aggregation plays a crucial role to
the normal stress. C© 2013 Author(s). All article content, except where otherwise
noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
[http://dx.doi.org/10.1063/1.4819462]

I. INTRODUCTION

Magnetorheological plastomer (MRP), which is prepared by dispersing micron-sized iron par-
ticles into a plasticine-like polymer matrix, is a new kind of smart magnetorheological materials and
was reported in our previous work.1, 2 MRP appears to be an interphase between magnetorheological
fluid3 and magnetorheological elastomer.4 In the absence of external magnetic field the iron parti-
cles cannot move in the plastic matrix, but they can arrange or rearrange to form some chain-like
microstructures along an applied magnetic field. This versatile characteristic makes MRP show a
much higher magnetorheological effect than magnetorheological elastomer.1 Except for novel per-
formance in rheology, MRP can also overcome the headache particle sedimentation problem5 of
magnetorheological fluid.

In regard to magnetorheological material, most investigations focus on the rheological effect in
storage modulus, loss factor, stiffness, and some other magnetic field dependent properties.6, 7 The
pioneer works to normal force were reported by de Vicente et al.8 and See and Tanner,9 indicating
that normal stress is sensitive to applied field under shear flow of magnetorheological fluid. Laun
et al.10 investigated the primary and secondary normal stress differences of a magnetorheological
fluid up to a 1.0 T magnetic field, showing that normal stress is important to stabilize concentricity in
concentric cylinder arrangement. Recently, the normal stress issue re-catched the attentions of some
researchers. The normal stress of magnetorheological fluid under one-way shear and oscillatory shear
has been studied experimentally by Jang et al.11 and Gong et al.,12 respectively. Magneto-induced
normal force of magnetorheological elastomer under compression state was investigated by Liao
et al.13 Magneto-induced normal stress plays important role in the applications of magnetorheological
material, such as polishing device, clutch, magneto-valve, seal device and especially the stability
control of some magneto-device. Motivated by the aforementioned researches, for the new versatile
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FIG. 1. The evolution of normal stress of MRP over time under different stepwise magnetic field. The incipient ten seconds
record the initial state of test sample without magnetic field. Then external magnetic field is suddenly applied and the magnetic
intensity is kept for six minutes. Then switch off the magnetic field and relax test sample. Two minutes later, the test procedure
is repeated.

MRP with superior performance in rheology, we have investigated the interior magneto-induced
normal stress and its microstructure-based generating mechanism. This paper will give a report
specifically on an interesting abrupt drop phenomenon of magneto-induced normal stress of MRP.

II. EXPERIMENTAL

To explore the magneto-induced normal stress of MRP, a series of experiments were imple-
mented at room temperature (25 Celsius degree). Test sample was polyurethane based MRP with
70 wt.% carbonyl iron particle (type CIP-CN, produced by BASF, Germany) which is prepared
using the same method as was used in our previous work.1 A commercial rheometer (type Physica
MCR 301, produced by Anton Paar GmbH, Austria) with a magneto-controllable accessory (type
MRD180) was used to test magneto-induced normal force. The test sample was imposed to the gap
of upper plate (type PP20/MRD) and base bed, with parallel gap fixed as 1.000 mm to confine the
vertical strain of test sample. The normal force is collected by the pressure sensor fixed on the upper
plate and used to calculate the normal stress in the test sample.

As Fig. 1 shows, the normal stress can be greatly altered by an external magnetic field and the
saturated normal stress increases accordingly with the increase of magnetic field. In particular, the
normal stress can reach to as high as 60.2 kPa when suddenly applying a 930 mT magnetic field.
The magneto-induced normal stress change is 3.44 times larger than the maximum normal stress
change (17.5 kPa) of silicone rubber based magnetorheological elastomer with 80 wt.% carbonyl
iron particle in the previous report by Liao et al.13

It can also be found from Fig. 1 that the normal stress gets a sudden increase and then approaches
to saturated values slowly when an external magnetic field is applied. We regard this process as creep-
like behavior of magneto-induced normal stress. The creep-like process in the forepart of loading
stage shows complex nonlinear behavior with magneto-mechanical coupling. After the magnetic
field is removed, the normal stress decreases gradually with time. Since the geometry of MRP is
fixed by the parallel plate and the base bed of rheometer all the time, we can regard this process as
the stress relaxation phenomenon of material. In addition, the normal stress in the posterior loading
stage spends less time to get saturated than that in the previous loading stage and it is interesting
that the saturate normal stress in posterior loading stage is smaller than that in the previous in a
sequential test.

III. THEORETICAL ANALYSIS AND COMPUTATIONAL

Theoretical analysis and particle dynamic simulation are especially proposed to understand
the microstructure-based generating mechanism of magneto-induced normal stress. To handle the
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interaction of two iron particles, we introduce a modified magnetic interaction force Fm
i j as an

improvement to conventional magnetic dipole model. The force model is preferred for modeling the
interaction of two close magnetized iron particles and presented as follow,

Fm
i j =

{
cm × Fdipole

i j , for D ≤ r ≤ 1.5D

Fdipole
i j , for r > 1.5D

, (1)

cm = 1 +
(

3 − 2r

D

)2 (
60.17

1 + e(θ−34.55)/12.52
− 22.79

)
1

100
, (2)

Fdipole
i j = − 3μo

4πr4μ1

[(
mi · m j

)
r̂ − 5 (mi · r̂)

(
m j · r̂

)
r̂ + (

m j · r̂
)

mi + (mi · r̂) m j
]
, (3)

where cm is the correction factor for adjusting magnetic point dipole to model two close magnetized
iron particles. D = (di + d j )/2 is the average value of two considered particles’ diameter di and
d j . r is the position vector from particle i to particle j and r = |r|, r̂ = r/r . θ denotes the angle of
the direction external magnetic field and the relative position vector and the other constant coeffi-
cients are the fitting coefficients from data analysis. Fdipole

i j is the well-known magnetic interaction
force between two magnetic dipoles. In Eq. (3), μ0 is the vacuum permeability; μ1 is the relative
permeability of matrix; mi and m j are the magnetic moment of particle i and j, respectively. More
experimental and theoretical discusses can be found in such references.14 Excluded-volume force
Fev

i j
15 and Van de Walls force Fvdw

i j
16 are also taken into account for modeling the interaction of

particle i and j. Due to carbonyl iron particle is made of soft magnetic material, the magnetic torque
applied on particle is so small that the magneto-induced rotational motion of iron particle can be
neglected. Hereto, the interaction force model between two iron particles is established.

We simplify the plastic polyurethane matrix as a Bingham fluid with initial yield shear stress τ0

and dynamic viscosity η at a certain constant temperature. Then the viscous drag force applied on a
moving particle i can be deduced as

Fdrag
i = −19π

8

(
d2

i τ0ν̂ + diην
)
, (4)

where ν = dr
dt is the velocity of particle moving, and ν̂ is the unit vector along ν. Inertia effect and

stochastic motion of particle moving are not accounted, this proceeding is reasonable and discussed
by Mohebi.7 With the forces aforementioned, the trajectory of particle i can be governed by kinematic
equation⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
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= 1
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8
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dt
= 0, while

∣∣∣∑ Fi

∣∣∣ ≤ 19

8
πd2

i τ0

, (5)

in which ζt = 19
8 πdiη is the translational drag force coefficient and

∑
Fi denotes the total force

excluding the viscous drag force applied on particle i. Periodic boundary condition is applied and
finite difference method is used to solve the kinematic equation. In the simulation, one time step is
set as 0.001 second and the total computing time step has 5 × 105 steps. The computing time can
cover the time range of a loading stage in experimental test. To calculate the interior stress state of
MRP, a stress formula is introduced and presented as

σ αβ = 1

V

N−1∑
i=1

N∑
j=i+1

rα
i j Fβ

i j , (6)

where V is the volume of considered cell, in which N particles are contained. rα
i j is the distance along

α direction (or axis) from particle i to j, and Fβ

i j is the β direction component of interaction force of
particle i to particle j.
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FIG. 2. Evolution of normal stress and relative interior microstructure changes over time under a 930 mT magnetic field. The
internal illustrations show the microstructures at different time with axonometric views (a) and top views (b). The posterior
stress relaxation curve is fitted from the experimental data.

IV. RESULTS AND DISCUSSION

In the simulation, the incipient 10 seconds are set to exclude volume overlap of particles ran-
domly placed at original 0th second. To match the time range of experimental test, the simulation
curve is cut at the 370th second and joints with a relaxation curve, which is fitted from the experimen-
tal data by using the KWW/Weibull function.17 As Fig. 2 shows, the simulation result agrees well
with the experimental result, indicating the theoretical analysis is reasonable. Sudden increase is due
to the instantaneous elasticity of matrix and iron particles aggregating some interior microstructures
contributes to the creep-like process when suddenly applying an external magnetic field. Meanwhile,
the microstructure evolution associating with the creep-like process of normal stress can be obtained:
uniform dispersing at the 10th s, short chains at the 25th s, long chains at the 100th s, and vertical
porous structure at the 370th s (along the direction of magnetic field). It is clear that the evolution of
iron particle aggregating microstructure under an external magnetic field plays a crucial role for the
creep-like process of normal stress. When applying magnetic field to initial isotropic sample in pre-
vious loading stage, particle-matrix interaction squeezes matrix vertically for the movement of iron
particles driving by magnetic force and this will contribute to the normal stress. The matrix-induced
normal stress will almost disappear in the relaxation stage. When the same magnetic field is applied
to MRP again, the vertical porous microstructure aggregated by iron particles has already formed in
the previous loading stage and the microstructure will be tensed while the matrix will not. Therefore,
stable magneto-induced normal stress will generate directly in this stage and microstructure-matrix
squeezing process will weakly happen. The above analysis explains why the normal stress in the
posterior loading stage spends less time to get a stable state than that in the previous loading stage
as well as the difference of the saturate value between two loading stages.

Abrupt drop phenomenon of normal stress in some loading stages can be observed in Fig. 1. It is
found that the drop phenomenon certainly occurs when the magnetic intensity is larger than 491 mT
and do not occur while the magnetic intensity is smaller than 244 mT. But the drop phenomenon of
normal stress is not observed in the simulation result, which indicates that some new microstructure
dependent mechanism has not been found. To understand the interesting phenomenon, a series of
long time loading experiments were implemented. Here, we take the time-dependent normal stress
under a 930 mT magnetic field for discussion.

It can be directly observed in Fig. 3 that the normal stress shows three abrupt drops at different
time points. The normal stress gets sudden down at a drop point and then approaches to a larger
value for a next drop point. Meanwhile, the intervals between drop points become larger and larger.
Finally the normal stress gets a stable value with a very little perturbation and no drop happens again.
It can be demonstrated that the abrupt drop phenomenon of normal stress occurs objectively, that is
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FIG. 3. Normal stress of MRP in response to a 930 mT magnetic field. The normal force of MRP was recorded in the
incipient 30 seconds. Then the magnetic field was suddenly applied and kept for 60 minutes. Finally, the magnetic field was
switched off and the test sample was relaxed for 3 minutes. The inset shows a schematic diagram: (a) initial isotropic state;
(b) long chain-like structures with lots of unstable contact surfaces; (c) the state after some unstable contact surfaces crashing
or slipping; (d) stable column-like structures. (—) represents the unstable contact surface and (A) represents the constraint
reaction force.

the drop is not from some improper processing or instrumental error. Combining the experimental
results in Fig. 1 and Fig. 3 with the simulation result in Fig. 2, it can be supposed that the interesting
drop phenomena may originate from the rupture of chain-like structure due to friction and squeezing
slip between contact particles. As the inset of Fig. 3 shows, when applying an external magnetic
field, the uniform dispersed iron particles (Fig. 3(a)) aggregate some short chain-like structures near
to each other firstly. In this process, small particles are attracted to large particles. Then some long
chain-like structures are constructed by the short chains approaching to nearby others (Fig. 3(b)).
However, these long chain-like structures are not stable enough as a result of that the contact surfaces
between small particles and large particles in the long chains are easy to slip. When the value of
tangential frictional force between contact particles exceeds a certain critical value, slipping occurs
at the contact surface (Fig. 3(c)) and the rupture velocity of particle chains is suddenly larger than
the reconstruction velocity of particle chains. This will result in the constraint reaction force, which
is equivalent with the magnetic force of the particle chains and the extrusion force of matrix, drops
down suddenly. Subsequently, the reconstruction velocity of particle chains is larger than the rupture
velocity of particle chains, which makes the normal stress increase gradually with time until the next
drop. Finally, the particles aggregate some stable column-like structures (Fig. 3(d)) and the normal
stress reaches to a saturate value. The rupture and reconstruction process will make normal stress
gets abrupt drop and approaches to a new value as well as the chain-like structure gets more and
more stable. In addition, it is worth emphasizing that the rupture is a random-like process due to
the complex particle distribution. For this reason, the drop phenomenon happens randomly and it is
difficult to give a crucial magnetic intensity, which plays the role of watershed to determine whether
the drop phenomenon occurs.

V. CONCLUSION

Three characteristics of magneto-induced normal stress of MRP are presented. Firstly, the
normal stress of the MRP with 70 wt.% carbonyl iron powder can reach to as high as 60.2 kPa
when suddenly applying a 930 mT magnetic field. The instability of normal stress appears when
an moderate external magnetic field is applied. This issue should be paid attention to seriously in
possible practical use. Secondly, theoretical analysis and relative numerical simulation reveal that
the interior microstructure of iron particle aggregation plays a crucial role to the evolution of normal
stress. Thirdly, a microstructure dependent slipping hypothesis can rationally explain the abrupt drop
phenomenon of magnetic-field-induced normal stress and slip effect should be taken into account for
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a more accurate simulation. This work is elementary to the exploration of the application of MRP, as
well as the performance optimization of magnetorheological material and relative magneto-device
design.
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