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Abstract
In the present work, an elastic-core-modified mesoscale dissipative particle dynamics model is
proposed, so as to investigate the microstructural evolution dependency on the viscosity in shear
thickening fluids. The characteristic of the microstructural evolution in the colloidal suspensions
under steady shear deformation is studied. The dominant interaction in the system changes from
the hydrodynamics to the strong frictional contacts during the discontinuous shear thickening
(DST) stage. An oscillatory shear action is creatively taken to study the rheological properties of
the suspension, as well as to investigate the microstructural evolution with dynamic response of
the system. The exact formulation of the relative viscosity as a function of the effective volume
fraction (EVF), which is obtained from the packaging of the frictional contact network, is
proposed. It is confirmed that the formation of frictional contact network of dispersed colloidal
particles is determined by the competition between construction and decomposition of the
particle contacts. The influences of different factors, like particle size, volume fraction, and
surface roughness, on the DST behavior are also explored to prove our mechanism. The
relationship of shear rate, frictional contact network, EVF, and apparent viscosity is revealed
clearly.

Keywords: discontinuous shear thickening, microstructure, effective volume fraction, frictional
contact network

(Some figures may appear in colour only in the online journal)

1. Introduction

Shear thickening fluid (STF) is a collective name for smart
materials with a remarkable non-Newtonian rheological beha-
vior, of which the apparent viscosity starts to increase when the
shear rate exceeds a specific value [1–3]. Great deals of
research [4–6] are conducted to explain the shear thickening
(ST) effect in different suspension systems under shear, and a
picture of ST phenomenon has emerged [7–15]. Hoffman [16]
thought that the transition of flow microstructure from an

ordered structure to a disordered one is responsible for the ST
behavior. While, with confocal imaging techniques, Wagner
and other researchers [17–25] concluded that in suspensions
the formation of ‘hydro-cluster’, long-lived particle clusters, is
the primary cause for the continuous shear thickening (CST)
phenomenon. And the competition between the shear-induced
cluster formation and the Brownian motion in the suspensions
can be used to determine a critical shear rate for the onset of the
ST phenomenon. Jamali et al [10] studied the hydrodynamic
contributions of colloidal particles with different stiffness
through numerical simulation, and they also took the first
normal stress difference to characterize the properties of the
dispersed particles under shear. The role of hydrodynamics
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contributions during the ST phenomenon has been explored
very thoroughly [26–31].

When the Brownian motion is absent in some suspen-
sions with large particles, the sharp discontinuous shear
thickening (DST) transition is observed. The increase of
apparent viscosity is both sudden and large with the shear rate
beyond a certain value. As is reported in many types of
research [32, 33], dense suspensions show highly DST
behaviors with little changes in the component of the system,
which show CST originally. Over the past few years, the DST
behavior has been the focus of sustained research efforts and
particle contact was considered by more and more researchers
[34–40]. In addition, many people [41, 42] also believed that
jamming and shear-jammed status take a key role in this non-
Newtonian behavior. Some researcher [36, 38] associated the
frictional contact and the jamming to explain this process,
Peter and partners [34] suggested that the DST state is an
independent phenomenon from shear-jammed transitions and
jamming states, and they confirmed that the frictional contacts
between particles do impact on the DST behavior. Townsend
[39] studied steady-state rheological properties of non-
Brownian suspensions and the effects of different frictional
contact modulus, and they estimated that soft or compressible
contacting is a key reason for DST effect in the experiment.
Mari et al [36] focused on the formation of contact networks
in STFs, and they associated the DST behavior with S-shaped
flow curves [40]. The existing simulations are more qualita-
tively studying the mechanism of ST, failing to completely
reproduce the experimental process and the data of the results.

Actually, from above results, the DST behaviors are
closely related with the dynamic and interactions of colloidal
particles in the viscous fluids. Much efforts has been con-
ducted on these two aspects [43–45]. Faltas [43] and Saad
[44] explored the translational and rotational motions of two
spherical particles with slip at surfaces. They adopted various
cases of the slip coefficients, the translational velocity, the
angular velocity, the separation parameter and the size ratio of
the two spherical particles to obtain accurate solutions. They
proposed the monotonical function of the impact of the slip
and the normalized hydrodynamics drag and couple. El-Sapa
and coworkers [45] also confirmed that the interaction effect
between particles decreases with the increase of both the slip
parameters and the permeability parameter via their effective-
medium approach.

Although, plenty of experimental and numerical works
have concerned on the reason for the DST behavior [14, 40–53].
The internal mechanism and conditions of emergence of DST
phenomenon remain ill-characterized. The effect of the interac-
tions between colloidal particles on the DST behaviors is still in
lack of study. To make the mechanism credible and valid, it is
necessary to deeply investigate the microstructure of the STFs.
In this paper, the non-Newtonian rheological behavior of STF
under steady and dynamic shear is conducted by a modified
dissipative particle dynamics (DPD) model. In the next section,
the modified DPDmodel concerned about the contact interaction
between colloidal particles is briefly reviewed, and then the
details of the computation model are introduced. In section 3, the

non-Newtonian rheological behavior of dense suspensions under
steady shear and the microstructural change of colloidal particles
in ST process are studied, followed by the viscoelasticity
properties and microstructural evolution of STF under oscilla-
tory shear. The evolutions of the contact network of suspensions
under oscillation are also analyzed. The connection between the
relative viscosity and the effective volume fraction (EVF) within
ST behavior, bridging by the frictional contact force and the
contact network, is deeply discussed throughout this section as
well. In section 4, the influence of volume fraction, particle size,
and surface roughness on the DST are also displayed to prove
the relationship concluded in section 3. Finally, the conclusion
of the simulation results is drawn in the last section.

2. Simulation method

2.1. Modified DPD model

The DPD technique is an alternative method for mesoscopic
complex fluid simulation, which was first developed for
simulating hydrodynamic behavior by Hoogerbrugge and
Koelman [15]. In traditional DPD models, the dissipative
particles need not correspond to real particles, in some cases,
they can be interpreted as representations of ‘groups of atoms’.
There are three types of forces to describe the interaction
between different dissipative particles in the model: a con-
servative force Fij

C deriving from a potential, a dissipative force

Fij
D that tries to reduce radial velocity differences between the

particles, and a further stochastic force Fij
S directed along the

line joining the center of the particles. The last two forces are
momentum conserving, which represent the viscous forces and
thermal noises between the dissipative particles. Most rheology
behaviors in suspension have been successfully mimicked by
the traditional DPD model [15, 54–57].

However, in the dense suspensions, the frictional contact
between dispersed solute particles is the main reason for the
DST behaviors, which has not been not correctly character-
ized in the traditional DPD model. Therefore, a modified DPD
model is proposed here to describe the diverse interactions in
the colloidal systems. And frictional contact interactions
between different colloidal particles are included.

In the modified DPD model, the motion equation for the
particles is expressed as:

å= + + +
¹

( ) ( )V
F F F Fm

d

dt
. 1ii

i

j i
j
C

ij
S

ij
D

ij
Contact

The conservative force is a linearly-decaying repulsive
function for the interaction between particles, which is always
denoted as:

= -
⎛
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⎞
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r
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ij
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c
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in which rc is the cutoff distance, rij is the distance between
particle i and j, and eij is the unit vector as = ∣ ∣/e r r ,ij ij ij

= -r r ri jij [54]. The aij is an empirical constant, which is
given as r» --( ) ( )/a K T k 1 0.2 ,ij B

1 where KB is the
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Boltzmann constant, T is the temperature, k−1 is the dimen-
sionless compressibility of the suspension, and ρ is the total
number density of the DPD particles [55].

The stochastic force is related the thermal fluctuations to
simulate the Brownian motion in systems. The formula of
stochastic force between particle i and j is given by:

= - Q D -⎛
⎝⎜

⎞
⎠⎟ ( ) ( )F eb

r

r
t1 , 3ij

S
ij

ij

c
ij ij

1
2

where bij is the strength of thermal fluctuations of the system,
Δt is the time step used in the simulation, and Qij is a
Gaussian stochastic number with zero mean value and
unit variance.

The dissipative force usually acts as friction and collision of
inter-particles to dissipate the energy in systems. This force is
against with the relative velocity between particle i and j, =vij

-v v .i j The formulation of the dissipative force is given by:

g= - -
⎛
⎝⎜

⎞
⎠⎟ ( · ) ( )F v e e

r

r
1 , 4ij

D
ij

ij

c
ij ij ij

2

in which γij is the dissipative parameter. To ensure the canonical
ensemble, there is a built-in thermostat in DPD potential.
Therefore, the random force and the dissipative force should
meet the fluctuation–dissipation theorem: g =/b K T2ij ij

2
B [55].

A Hooke-core model is adopted here to describe the
contact interaction between the colloidal particle [57]. The
contact force Fij

Contact between different colloidal particles is
divided into two parts, the normal contact force, F ,N ij

Contact
,

and the tangential contact force, F :T ij
Contact

,

d= ( )F ek n , 5ijN ij
Contact

n ij,

= D ( )F sk , 6ijT ij
Contact

t,

where kn and kt are the normal and tangential elasticity con-
stants, respectively, and δnij represents the reduction of the
core distance between particle i and j due to the normal elastic
deformation, and Dsij denotes the tangential displacement
vector between particle i and j.

The frictional contact behavior between different colloi-
dal particles is represented as follows: the tangential dis-
placement of the colloidal particle is calculated based on a
Coulomb’s style friction critical condition, which is given by:

 m∣ ∣ ∣ ∣ ( )F F , 7T ij
Contac

N ij
Contact

,
t

,

of which μ is the Coulomb’s friction coefficient. If the Cou-
lomb’s law of equation (7) is fulfilled, the particles do not slip
with each other, and the tangential displacement is updated
through the relative tangential velocity of particles:
D =s v dt,ij ij

T where = ´ - ´( )v e v v e .ij i j ijij
T If not, the

particles are sliding and the tangential displacement is depen-
dent on the normal contact force: mD =∣ ∣ ∣ ∣/s F k .ij N ij

Contact
t,

The position, velocity, and acceleration of ith DPD particle
(including both solvent and colloidal particles) at time
t+ΔtMD are obtained from the same quantities at time t in the
following way:
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The position and velocity between the colloidal particle is
firstly expressed as follows:

+ D = + D - + D( ) ( ) ( ) ( )r r rt t t t t t , 12ij i jMD MD MD

+ D = + D - + D( ) ( ) ( ) ( )v v vt t t t t t , 13ij i jMD MD MD

And the specific form of the variables related to the
Coulomb’s friction in the simulation is given as:
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f and velocity vi

f of the colloidal particles are
both dependent on the real tangential displacement, and shown
as follows:
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2.2. Computational model details

The solvent particles in our simulation systems are taken as
beads with a hard core of diameter dS, which is set as 1% of
the cutoff radius of solvent–solvent interactions rcut, 75 nm.
And the mass of solvent particles ms is set as
1.99×10−18 kg. The conservative parameter aij, and dis-
sipative parameter γij for the solvent particles are chosen as
1.35×10−12 N, 6.03×10−9 N s m−1, respectively. These
solvent particles with highly small cores contribute less to the
frictional interactions in the mesoscale system. The diameter
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of colloidal particles is denoted as D=300 nm. The mass of
colloidal particles is calculated from: mc=(D/rcut +1)3ms.
The tangential elasticity constants kt is set as 72 Nm−1, and
the normal elasticity constants is taken as kn=144 N m−1 in
the simulation. The frictional coefficient μ is selected as 1.0.
The conservative parameter aij and dissipative parameter γij
between different particles are dependent on the size of col-
loidal particles.

As is plotted in figure 1, the superscript C–C, S–S, and
C–S are adopted to denote the interaction between the col-
loidal and colloidal particle, solvent and solvent particle, and
colloidal and solvent particle, respectively:

g
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= + = +

= + = +

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )

–

–

–

–

–

–

–

–

a

a

d

r

a

a

d

r

d

r

d

r

1,
2

1

1 ,
2

1

, 20

ij
C C

ij
S S

c

cut

ij
C S

ij
S S

c

cut

ij
C C

ij
S S

c

cut

ij
C S

ij
S S

c

cut

2 2

The interaction between different particles in the simu-
lation system is very complex. To reduce the computation
cost, the cut-off distance between different particles is chosen
as plotted in figure 1(a). When the interparticle separation rij
is larger than the cut-off distance, the interaction between
different particles is zero. When + < <-d d r r ,c S c

C C
ij the

interactions between colloidal particles -Fij
C C is zero. If the

separation distance rij between colloidal-solvent and solvent–
solvent is smaller than the cut-off distance -rc

C S and -r ,c
C S the

interactions -Fij
C S and -Fij

S S are considered in the simulation
process (figure 1(b)). When the distance between colloidal
particles is smaller than the -r :c

C C + < -d d r rc S ij c
C C

(figure 1(c)), the interaction between the pair of colloidal
particles -Fij

C C is included in the simulation. In the Hooke-
core model, if the distance between solute particles is smaller
than dc+dS, the contact force start to take effect in the
computation of interaction between the colloid–colloid par-
ticles, as shown in figure 1(d).

The simulation box is a cube with an edge length of
m= = =L L L 2.25 m.x y z The Lees–Edwards boundary

condition [58, 59] is applied in the simulations. The total
number of all DPD particles, including both solvent and
dispersed ones, is 81 000. The volume fraction of colloidal
particles is defined as: f p= /N D L L L6 ,x y z

3 where N is 450,
the total number of colloidal particles. The temperature of the
whole system is kept at 293 K. The time scale is denoted as:
t = = ´ -/m r K T 1.86 10 s,s cut0

2
B

3 and the time step of
this simulation is set as ΔtMD=186 ps.

Two different external loading conditions are applied to the
simulation system. Firstly, a steady simple shear deformation is
exerted on the system for about 3×105 time steps. The apparent
viscosity is calculated through the equation: t gh = / ,xy where
τxy denotes the virial shear stress, which is obtained as an average
value every 1000 steps, and g denotes the applied shear rate [58].
The shear rate g , at which simple shear keeps, is consistent with
the result calculated from the velocity gradient: /dv dl .y Sec-
ondly, an oscillatory shear deformation is mimicked to study
dynamic responce of the system. The applied shear strain is
denoted as: g g w= ( )tsin ,0 in which ω and γ0 are the angle
frequency and strain amplitude of oscillatory shear, respectively.
The complex viscosity is obtained by: *h = s

wg
,0

0
where σ0 is the

shear stress amplitude during the oscillation. And the storage

Figure 1. The schematic diagrams of interactions between different particles in colloidal suspension. The specific values of cut-off distances,
rc, between different particles are plotted in (a). The forces between different colloidal partices with different center-to-center distances are
illustrated at, (a) rij=rc, (b) rcontact = + < <d d r rc S c ij (far from contact), (c) + <d d r rc S ij c (near contact), and (d) < +r d dij c S

(contact). The conservative and dissipative forces between different types of particles are drawn in (e), and (f), respectively.
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modulus and loss modulus are calculated from: j¢ = s
g

G cos ,0

0

j = s
g

G sin ,0

0
respectively.

3. Results and discussion

3.1. Typical DST phenomenon in steady shear deformation

The demonstration of simple shear under different shear rates
is conducted. As shown in figure 2(a), the apparent viscosity
at the shear rate of 1.79 s−1 is 5.46 Pa s. As the shear rate
increases, the viscosity decreases firstly and then reaches a
platform with an average value of 0.4 Pa s at the shear rate of
71.6 s−1. And then, a sharp increase in viscosity emerges at
the shear rate of 537 s−1. After that, the viscosity starts to
burst and reaches the highest value 482 Pa s at a shear rate of
1790 s−1, which appears an obvious DST phenomenon. As
can be seen in figure 2(a), the ST ratio of maximum/critical
viscosity is about 1000, similar to the experimental results
[59]. The relation between the first normal stress difference
N1 and the shear rate is plotted in figure 2(b). The first normal
stress difference is defined as N1=σ11−σ22, where σ11 and
σ22 are the stress components along the shear direction and
normal to the shear plane, respectively. It is obvious that N1 is
fluctuating around zero before the critical shear rate. And with
the suspension entering into the DST status, the N1 starts to

grow exponentially with the increase of shear rate, which
means the elasticity of the suspension significantly increase
with the shear rate increasing.

By considering a rectangular region in the simulation
box, as illustrated in figure 3. If the region deforms under
simple shear, the changed configuration as a function of the
reference one is written as:

= + = = ( )x X kX x X x X; ; , 211 1 2 2 2 3 3

where k is the amount of shear.
The relations between principal stretches λ1, principal

compression λ3, and amount of shear, considering a plane
strain state, i.e. λ2=1, may be given by:

l l= + + +

= + - + ( )

k
k

k

k
k

k

1
2

1
4

and

1
2

1
4

, 22

1

2 2

3

2 2

And thus, the distance between the colloidal particles in
the rectangular region may increase along the principal
stretches direction, but reduce along the principal compres-
sion direction.

The evolution of the radial distribution function (RDF)
under different shear rates is analyzed. As plotted in
figure 4(a), it shows that the first peak maintains steady before

Figure 2. (a) Viscosity versus the shear rate in a typical DST suspension. (b) The first normal stress difference of the colloidal suspension
under different shear rates.

Figure 3. Illustration of simple shear deformation.
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the shear rate of 537 s−1. After that, with the shear rate
increasing, the maximum of the peak reduces and the width
increases. And it is found that the peak gradually shifts left
after the critical shear rate, which means that the colloidal
particles turn to be more compact during the ST process.

Here, the contact line method is used to trace the contact
status between different colloidal particles. As the modified
DPD method discussed, colloidal particles contact with each
other when their mutual distance is smaller than dc+dS, a
contact line is drawn between these two particles, and dif-
ferent colors are used to represent the contact orientation. If
the orientation is in the range between 1° and 89°, it is painted
in blue color. And if the orientation is in the range between
91° and 179°, it is colored in red. Others (horizontal and
vertical orientation) are in cyan color. The contact lines under
different shear rates are plotted in figure 4(b). It is found that
few contact is emerged at lower shear rates. When the DST
happens, the contact lines turn to be intensive and a stable
contact network is formed. As it also can be seen from the
figure 4(c), the contact along the principal compression
direction suddenly increase when the shear rate exceed the

critical shear rate. The compression contact makes the col-
loidal particles closer, which induces the left shift of the first
peak in the RDF.

3.2. Dynamic mechanics analysis of the suspension

Besides the steady shear, a further numerical simulation is
performed to study the formation of the contact network by
using an oscillatory shear with different excitation fre-
quencies. The variation of the complex viscosity with the
frequency is analyzed and shown in figure 5(a). It is found
that the complex viscosity shares the same critical shear rate
with the ST behavior under steady shear deformation
(figure 2(a)), which meets Cox–Merz rule [60] very well. The
changes of storage and loss modulus with the excitation fre-
quency in the simulation are also plotted in figure 5(b). The
two moduli both raise with the increase of frequency, and the
increase ratio of storage modulus is much higher than that of
loss one, which displays the rapid transition from viscosity to
elasticity of the whole colloidal suspension after the critical
shear rate. By calculating the variation of phase angle with the

Figure 4. (a) The radial distribution function for colloidal particles at different shear rates in a typical DST suspension. (b) The illustration of
contacts between contacted colloidal particles in the suspension under the increasing shear rate. The orientation of blue contact lines are in
angle between 1° and 89°, the orientation of red contact lines are in angle between 91° and 179°, and the orientation of cyan contact lines are
along others. (c) The number of particle contact along different angles with different shear rates. The insert shows the specific number of
contacts along the directions of compression and stretching at different shear rates.
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frequency in figure 5(c), it can further illustrate the transition
from viscosity (j = p

2
) to elasticity (j=0) by the ST

behavior.
The evolution of friction contact network during the

oscillation with a 716 Hz excitation frequency is also inves-
tigated. As illustrated in figure 6(a), the snapshots of contact
lines in the suspension system at different time points are
provided, and the contact numbers at each time point count up
in figure 6(b). It shows that the frictional contact network has
an obvious periodic trend. When the shear strain is zero (time
point I and V), the number density of the contact network
reaches maximum due to the largest shear rate. After that, the
density of the contact network gradually reduces until the
shear direction changes (II, VI and VII). With the shear
direction reversing (III and VIII), few contacts happen. And
then, with the shear strain reduced, the contact network
emerges again. It is seen that most of the contact direction is
along the compression direction in the simple shear defor-
mation. Under the oscillatory shear deformation, the forma-
tion time of the contact network is closely related to the
excited frequency. Under lower excited frequencies, there is
no contact network formed as only shear-thinning phenom-
enon happens. While under higher excited frequencies, the
contact network suddenly appears. The number of 140 is
chosen as the monitoring value for the formation of the
contact network. Here T is one cycle time period of the shear
deformation. The variation of formation time with excited
frequency is shown in figure 6(c). It is found that at the low
shear frequency, there is no contact network. At the shear
frequency of 537 Hz, the contact network starts to appear.
Then with the loading frequency increasing, the formation
time for the contact network is reduced. From the simulation
results under oscillatory shear, it is confirmed that the for-
mation of the contact network between colloidal particles is
the key factor for the DST behaviors of densified suspensions.

3.3. EVF during DST

The viscosity of the monodisperse suspension can be calcu-
lated by a general function h f= g g ( )f Pe Re, , ,r where ηr is
the relative viscosity of the suspension (ηr=η/η0, where η0

denotes the viscosity of the pure solvent), f is the volume
fraction and g g Pe Re, are both regarded as invariants number
when the shear rate is fixed [61]. Therefore, the viscosity is
determined by the volume fraction. During the DST stage in
both of the steady and dynamic shear, the interparticle fric-
tional contact accelerates the solidification from the point of the
whole suspension. Besides, from the perspective of a single
particle, the solvent particles are squeezed out under the action
of the frictional contact of elastic cores. As the contact network
formed, the solvent particles locked in the center of the col-
loidal particles network, which can be described as the
‘restrained solvent particles’, contribute little to the lubrication
and friction in the suspension. These restricted solvent particles
are seen to fill the blank areas in the cube, which is around the
contact area between each pair of colloidal particles. Mean-
while, the solvent particles surrounding the colloidal particles
are regarded as the ‘free solvent particles’, which can flow
freely in the suspension. The total volume of colloidal particles
and restrained solvent particles are the effective volume
that affects the ST behavior. The expression of the EVF is as
follows:

f =
+

=
+

+ +
( )

V V

V

V V

V V V
, 23e

cp rs cp rs

cp fs rs

where fe is the EVF, Vcp, Vrs and Vfs are the volume of col-
loidal particles, the restrained solvent particles, and the free
solvent particles, respectively. As the figure 7(a) shows, the
colloidal particles are thus split into two parts, the contact ones,
and the individual ones:

= + ( )V V V , 24cp con ind

where Vcon denotes the volume of contact particles, and the Vind
denotes that do not contact.

For the Vind, the formula for the volume fraction is:

p= ( )/V Q D 6, 25ind
3

where Q is the total number of individual colloidal particles,
D is the diameter of colloidal particles.

When the colloidal particles contact, the Hooke-core
deforms because of the normal contact force, leading to an

Figure 5. (a) The complex viscosity versus frequency in the colloidal suspension. (b) The storage and loss modulus along the frequency of
suspension in the simulation. (c) The phase angle between shear strain and stress as a function of frequency.
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Figure 6. (a) The shear strain over time of the suspension under oscillatory shear at a frequency of 716 Hz. The insert shows the snapshots of
colloidal particle microstructure under medium frequency oscillatory shear at the different shear time points. The orientation of blue contact
lines are in angle between 1° and 89°, the orientation of red contact lines are in angle between 91° and 179°, and the orientation of cyan
contact lines are along others. (b) The histogram of particle contact number in the nine shear points of the insert in (a). (c) The formation time
of particle contact network in each cycle T.
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error of o(δn3) in the calculation of the volume of colloidal
particles. The volume of the contact particles in the system is
as follows:

p d= - +( ) ( ) ( )V N Q D o n
1

6
, 26con

3 3

where N is the total number of the colloidal particles, and
o(δn3) denotes the slight deformation of the contacted
particles.

Along the inter-particle core-to-core distance of con-
tacted particles, a cube is adopted with a diagonal length of
(D− δn). Thus, 1/8 part of the sphere in each core is included
in the new cube with side length of d-( )/D n 3 , which is
obvious in figure 7(b). The deformed cores occupy the
overlap area of cores and cube, while the squeezed-out sol-
vent particles fill the blank are of the cube. The volume of the
restrained solvent particles at each contact is given as:

d
p

= - =


- -( ) ( )V V V D n D
1

4

1

3 3 24
, 27rs cube sphere

3 3

where Vcube is the volume of the cube region, and Vsphere

denotes the volume of each colloidal particle.
Finally, the EVF of colloidal particles, induced by the

deformed colloidal particles and the packaged solvent parti-
cles, is a function of the contact number m:

åf p d
p

d

= +


- -

+

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥( )

( )} ( )/

N D D n D

o n L

1

6

1

3 3 24

. 28

e
m3
1

3 3

3 3

The changes of EVF along the shear rate is plotted in
figure 7(c).

A relative viscosity expression is adopted here same as
the Krieger viscosity [61, 62] formulation:

h f f= - f-( ) ( )1 . 29r e m
2.5 m

where fe is the EVF, fm is the maximum volume fraction, for
which the suspensions cease to flow [61]. The variation of the
relative viscosity is fitted and the result comparing with other
equations is shown in figure 7(d). It is obvious that the

Figure 7. (a) Schematic illustration of the particles during the DST process. (b) The illustration of the effective volume of colloidal particles at
contact. (c) The effective volume fraction as a function of the shear rate. (d) The fitted curves of the relative viscosity versus EVF in
suspensions.
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viscosity model defined by the EVF, which is based on the
frication contact network, can effectively describe the dis-
continuous shear thickening behaviors.

4. Influence factors of suspension on DST behavior

4.1. Volume fraction of colloidal particles

As reported in previous literature [19–22], the volume frac-
tions would affect the ST behavior. Here we set up several
different systems in which the volume fraction f of colloidal
particles is about 38%, 43%, 50%, 53%, 56%, respectively.
And other parameters are the same as those defined in the
system A. As shown in figure 8(a), the typical DST
phenomenon is emerged in each system. According to the
results, it can be found that there is a positive correlation
between the volume fraction and the initial viscosity
(figure 8(b)). Conversely, the development of the critical
viscosity shows a reverse trend. The evolution of contact
status between different colloidal particles is provided in
figure 8(c). As can be seen, the formation of the contact

network is more easy in the suspensions with higher volume
fraction. The EVF of low concentration is obviously low than
that of high one, no matter at the beginning stage or the DST
period. As a result, the system with a higher volume fraction
have a higher maximum viscosity and can enter into the DST
status at a smaller critical shear rate.

4.2. Particle size of colloidal particles

To understand the effect of the particle size on the DST
effects, another simulation is carried out by setting the col-
loidal particle diameter dc as 240 nm, 270 nm, 300 nm,
330 nm, 360 nm, respectively. The number of colloidal par-
ticles varies to maintain the volume fraction constant at 56%.
The other parameters are the same as which defined in the
system A. Figure 9(a) displays the apparent viscosities of all
the systems with different particle diameters under steady
shear. Although the number density for small colloidal par-
ticles is large, the contact interaction between colloidal par-
ticles and the hydrodynamics interaction with surrounding
solvent particles do not increase as much, due to the small
action area in each small particle at the stage of entering DST.

Figure 8. (a) The viscosity versus shear rate of colloidal suspensions with different phase volume fractions. (b) The initial, the critical, and the
maximum viscosity, as well as the critical shear rate in ST phenomenon as a function of different volume fractions. (c) The snapshots of
particle contact of suspensions with different volume fraction at a shear rate of 1790 s−1. The orientation of blue contact lines are in angle
between 1° and 89°, the orientation of red contact lines are in angle between 91° and 179°, and the orientation of cyan contact lines are along
others. (I) 38% vol. (II) 43% vol. (III) 50% vol. (IV) 53% vol. (V) 56% vol.
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As a result, the initial viscosity and the maximum viscosity
show slightly decline with the shear rate increasing, as shown
in figure 9(b). On the other hand, from point of the evolution
in figures 9(c) and (d), due to the low increase of EVF in the
suspension with small colloidal particles, it needs a higher
shear rate to form the stable contact network for the DST
phenomenon emergence. Our simulation results fit very well
with Kalman’s experiment results [21].

4.3. Particle surface roughness of colloidal particles

The influence of the particles surface roughness on the DST
behavior is also studied here by changing the friction coef-
ficient μ of colloidal particles. Figure 10(a) presents the
curves of apparent viscosity versus shear rate of suspensions
with different friction coefficients. It clearly shows that there

is no obvious DST phenomenon when the friction coefficient
μ is below 0.6. Though the viscosity in suspension with
particle friction coefficient of 0.4 raises a little at a very high
shear rate, this curve shows no DST effect because of the
initial viscosity far larger than the final one. Therefore, we
define 0.6 as the critical friction coefficient for the DST
behavior in current suspension system, below which the DST
does not appear. From figure 10(b), it can be concluded that
there is a smaller critical shear rate, a higher initial viscosity, a
higher critical viscosity, and a higher maximum viscosity in
the system with higher particle roughness. Further simulations
are conducted to explore the relationship between the critical
friction coefficient and the volume fraction of colloidal par-
ticles. The reduction of critical friction coefficient accom-
panied with the increasement of the contents of colloidal
particles is plotted in figure 10(c). It can be found that more

Figure 9. (a) The viscosity versus shear rate of colloidal suspensions with different colloidal particle diameters. (b) Several viscosities and the
critical shear rate in ST as functions of particle diameters. (c) The snapshots of particle contact of different suspensions at the initial shear rate
of 1.79 s−1. (d) The snapshots of particle contact of suspensions at a shear rate of 1790 s−1. The orientation of blue contact lines are in angle
between 1° and 89°, the orientation of red contact lines are in angle between 91° and 179°, and the orientation of cyan contact lines are along
others. (I) dc=240 nm. (II) dc=270 nm. (III) dc=300 nm. (IV) dc=330 nm. (V) dc=360 nm.
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rough surface of the colloidal would do help to the occurrence
of DST behavior in suspension with lower colloidal con-
centration. As reported in Hsiao’s work [29], it is found that
the smooth colloidal particles can minimize ST behavior,
which is consistent very well with our results. As for the
evolution of contact networks in figure 10(d), obviously,
since the high tangential contact interaction can be more
beneficial to impede the movement of a colloidal particle
under hydrodynamics interaction, it is easy for the suspension
with rougher colloidal particles to form a stable contact net-
work. Thus, the EVF in suspension with smooth particles is
small, comparing to that with rough particles. From this point
of view, it can be confirmed that the frictional contact

interaction between different colloidal particles takes the key
role in the formation of a stable contact network, which is the
cause of the appearance of the DST phenomenon.

5. Conclusions

On the basis of the reported approaches [34, 54–58], the core-
modified DPD mesoscale method is adopted to study the non-
Newtonian behavior of STFs. Both steady and oscillatory
shear actions are taken to study the rheological properties of
the suspension, as well as the static and dynamic response of
the system. It is proved successively that the shift of viscosity

Figure 10. (a) Shear rate dependence of viscosity with different particle surface roughness. (b) The initial, the minimum, and the maximum
viscosity, as well as critical shear rate in ST dependence of particle surface friction coefficient. (c) The relationship between critical friction
coefficient and the content of colloidal particles connected with the occurance of DST behaviors. (d) The snapshots of particle contact of
suspensions with different particle friction coefficient at a shear rate of 1790 s−1. The orientation of blue contact lines are in angle between 1°
and 89°, the orientation of red contact lines are in angle between 91° and 179°, and the orientation of cyan contact lines are along others.
(I) μ=0.0. (II) μ=0.4. (III) μ=0.6. (IV) μ=0.8. (V) μ=1.0.
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is firmly connected with that of frictional contact network.
The rheological properties and microstructural evolution of
the suspensions with different influence factors are also
investigated. A relationship is established between the relative
viscosity and the EVF during DST. We have obtained good
agreements between our simulation results and the real
experimental data [21, 29].

Under the shear action, the dominated inter-particle
interaction in suspension is determined by the competition
between hydrodynamics and frictional contact force. This
transition leads to the rivalry between formation and
destruction of frictional contact networks in microscale. The
particle contact also induces the increase of the EVF of the
colloidal particle in the STF. In macroscale, the viscosity of
the system raises dramatically with shear rate during the DST
process. This correspondence, throughout local and global of
the system, between microstructure and viscosity under shear
in STF is consistent well with previous findings [17–21,
34–38, 63–65].

This work can also predict some results, which are hardly
obtained directly due to the limitations of the existing
experimental conditions. These findings can also provide
guidance for preparing STFs that meet specific engineering
requirements.
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