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Abstract
Magnetorheological elastomers (MREs) are a group of smart materials which have many
applications such as dynamic vibration absorbers, engine mounts, and so on. The damping
behavior is important for applications of MREs. However, the mechanism of the damping of
MREs has not been investigated thoroughly. In this study, MREs are modeled as special
particle reinforced composites with magneto-induced properties and the mechanism of the
damping behavior of MREs is investigated theoretically and experimentally. It has been found
that there are three types of damping property in MREs: the intrinsic damping, the interface
damping and the magneto-mechanical damping. The presented damping model is successfully
validated by damping tests on a series of MRE samples. Furthermore, the relationships
between the damping properties and formulas of MREs are discussed; this provides guidance
for the manufacture of MREs with various damping properties.

(Some figures may appear in colour only in the online journal)

Nomenclature

MRE Magnetorheological elastomer
CIP Carbonyl iron particle
PRC Particle reinforced composite
DM Overall damping of MRE
DC Intrinsic damping
DI Interface damping
DM Magneto-mechanical hysteresis damping
Dm Intrinsic damping ratio of the matrix material
Dp Intrinsic damping
Vm Volume fraction of the matrix particles
Vp Volume fraction of the CIPs
φ Volume fraction of the CIPs
Ds

I Strongly bonded interfacial damping
Dw

I Weakly bonded interfacial damping
υ Poisson ratio of the matrix material
V Volume of the MRE sample
di Radius of the ith CIP

S Area of relative motion
(σ̄τ )i The tangential component of τ at S
σn, στ Normal, tangential component of stress at S
εcr Critical strain of relative movement
σ0, ε0 External stress, strain
f Friction coefficient between the matrix material

and the CIPs
ζ Stress concentration coefficient σn/σ0
Vi Volume of the ith CIP
K Discount coefficient
Ec Storage modulus of the MRE sample
ϕ =

ϕ(σ0, ε0)

Proportion of strongly bonded interface

1E Magneto-induced elastic modulus of the MRE in
respond to strain ε

E0 Initial elastic modulus of the MRE sample
α dE

dε
E0 Initial elastic modulus of the MRE
µ0 Permeability of vacuum
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µ1 Relative permeability of the MRE sample
EH0 External magnetic intensity
d Mean diameter of CIP.

1. Introduction

Magnetorheological elastomers (MREs) are a group of
smart materials whose properties can be controlled by
an external magnetic field [1–4]. MREs are normally
manufactured by mixing magnetic micron-sized particles into
soft polymer matrix materials. Thus MREs are regarded as
a special kind of particle reinforced composite (PRC) [4–6].
Upon curing the matrix material, the magnetic particles
in MREs form chain-like or column-like structures [4, 5,
7]. As a result, MREs not only inherit all the merits of
traditional PRCs, but also exhibit numerous novel properties
such as magnetorheological behavior, magnetostriction and
thixotropy [4, 6]. More specifically, the microstructures
and stiffness of MREs are adjustable by external stimuli
such as magnetic field and strain, and thus enable a rapid
response and reversible mechanical properties [1, 4–6, 8].
Recently, MREs have been proposed for various applications,
especially in the field of vibration and noise control, such as
tunable and adaptive engine mounts, noise insulation devices,
vibration isolators, vibration absorbers, artificial muscles, and
so on [9–15].

Researchers have been engaged in developing MREs
that exhibit controllable stiffness and damping capacity, since
these properties are vital in applications of vibration and
noise control [4, 6, 16–18]. Deng et al [19] developed an
adaptive tuned vibration absorber with improved performance
by utilizing MREs, Li et al [20] reported the usability
of a new force sensor based on MREs and Hasheminejad
et al [12] employed a tunable MRE cored sandwich plate
to achieve notable sound insulation characteristics at high
frequencies. Thus far, the reports on MREs have mainly
concentrated on enhancing the magneto-induced properties,
especially the controllable stiffness properties. The damping
behavior of MREs, an important parameter for applications,
has not been thoroughly studied. Du et al [10] pointed out
that damping capacity was crucial to the continuous on–off
control in their study on an MRE based isolator and Collette
et al [21] reported that the controllable damping capacity of an
MRE based dynamic vibration absorber (DVA) far outweighs
that of a traditional DVA. Therefore, it is necessary to
comprehensively investigate the damping behavior of MREs.
Many researchers have engaged in this study. For instance,
Li et al [22] employed a MATLAB optimization algorithm to
predict the equivalent stiffness and damping, Choi et al [23]
adopted a higher order sandwich beam theory to investigate
the damping property of MREs and Danas et al [24] proposed
a transversely isotropic energy density function to describe the
magneto-induced mechanical behavior. These models have
the ability to explain the experimental results well, yet they
cannot provide insight into the damping mechanism of MREs.
Ivaneyko et al developed a linear elasticity model to describe
the mechanical behavior of MREs [25] and Chen et al [26]
presented an interface slip model to describe the damping

mechanism of MREs. However, the magneto-mechanical
damping and intrinsic damping were ignored in their study.
To accurately predict the damping properties of MREs, the
damping behavior of MREs should be systematically studied
via both theoretical modeling and experimental examination.

In this study, the mechanism of the damping behavior of
MREs is investigated and a theoretical model is developed.
The damping of MREs originates from three categories,
the intrinsic damping, the interface damping and the
magneto-induced damping. MREs are treated as special
PRCs with novel magneto-induced properties, and then the
corresponding model is developed to reveal the mechanisms
of the damping behavior of MREs and characterize the
variables that determine the damping capacity. The proposed
model is then validated by damping tests on a series of MRE
samples. These MRE samples are prepared with different
weight contents of ferromagnetic CIPs and tested under a
series of strain amplitudes. The experimental results agree
well with the theoretical analysis of the three kinds of
damping behavior of MREs. In addition, the parameters of
the formulas of MREs that affect the damping behavior are
also analyzed; this provides guidance for the manufacture of
MREs with controllable damping properties.

2. Damping mechanisms of MREs

MREs can be regarded as special particle reinforced
composites (PRCs). They not only possess the qualities of
traditional PRCs but also exhibit novel magneto-induced
properties [2, 4, 5]. Therefore the damping of MREs is
classified into the non-magnetic damping and the magnetic
damping. It is widely accepted that the damping of a
traditional PRC is a combination of several sources [16, 26,
27]: the intrinsic damping of each individual constituent [17],
the interface damping between two material phases [28,
29] and the thermal mismatch and dislocation damping
caused by the response strain difference between the two
components [27, 30]. Since MREs are usually polymer
matrix composites, the dissipation energy caused by the
thermal mismatch and dislocation damping is negligible.
Thus, in general, the non-magnetic damping is thought to
be a combination of intrinsic damping and the interface
damping. The magnetic damping of an MRE is a parameter
that evaluates the magnetic energy dissipation [31, 32].
It includes the eddy current loss, the magneto-mechanical
hysteresis loss and the residual magnetism loss. Usually,
the magnetic particles used in manufacturing MREs are soft
magnetic material so that the residual loss is negligible
and can be ignored. In addition, the magnetic domain
in each dipole is adjusted to the external vibration and
thus dissipated energy. The corresponding energy loss is
known as eddy current loss, and it is closely related to
the vibration frequency. However, this type of energy loss
is negligible when the strain amplitude exceeds 10−4 [31].
Therefore, the magnetic damping is mainly determined
by magneto-mechanical hysteresis damping. Based on the
analysis, the overall damping capacity of MREs is constituted
by three types of damping: the intrinsic damping DC, the
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interface damping DI and the magneto-mechanical damping
DM. The overall damping capacity of an MRE is then
expressed as

DMRE = DC + DI + DM, (1)

and the details of each term will be discussed in the following
sections.

2.1. Intrinsic damping

Since MREs are special particle reinforced composites made
from two materials, the rule of mixtures (ROM) [30] is
applicable to describe the intrinsic damping of MREs. The
overall intrinsic damping capacity of an MRE is determined
by the content and the constitutive damping capacity of each
individual component, which can be expressed as

DC =
1

Vm + Vp
(VmDm + VpDp) = (1− φ)Dm + φDp (2)

where Vm is the volume fraction of the matrix particles, Vp is
the volume fraction of CIPs, DC denotes the intrinsic damping
capacity of the MRE, Dm denotes the damping ratio of the
matrix material, Dp represents the intrinsic damping of the
CIPs and φ is the volume fraction of the CIPs.

The damping capacity of CIPs is far less than the intrinsic
damping capacity of the polymer material, and therefore their
contribution to the overall damping capacity is negligible for
simplicity. Then the overall intrinsic damping capacity of an
MRE with CIP content φ is rewritten as

DC = (1− φ)Dm. (3)

From equation (3), the intrinsic damping is proportion to the
volume fraction of matrix material, and the damping capacity
will decrease when the volume fraction of CIPs increases.

2.2. Interface damping

The condition of the interfaces is significantly important
in determining the damping capacity of PRCs [16, 27].
Considering that MREs are special PRCs, the interfacial
condition plays an important role in determining the
damping of MREs. However, previous research has failed
to comprehensively consider the condition of interface
bonding [26]. The interfacial bonding can be classified into
three categories [16, 33]: ideal interfaces, strongly bonded
interfaces and weakly bonded interfaces. The role of ideal
interfaces is to transfer the strain and stress between two
material phases, yet they do not contribute to the overall
damping. For strongly bonded interfaces, the damping is
mainly caused by the stress concentration adjacent to the
surface of the reinforcing particles. Meanwhile, in the case of
weakly bonded interfaces, the damping is mainly caused by
the internal friction between the two material phases where
the relative motion takes place.

2.2.1. Strongly bonded interface. It has been reported
that the interfacial bonding is strong when the content of
reinforced particles and the applied external strain amplitude
are low [34]. Due to the discrepancy in the properties between
the matrix material and the reinforced particles, a special
layer adjacent to the surface of the CIP is generated. The
property of this special layer is distinct from each individual
component. This layer is named as the interphase. The
interphase mainly plays the role of transferring stress between
the matrix material and the reinforced particles. However, the
thickness of the interphase varies from place to place. As
a result, the bonding strength changes accordingly, making
interfaces with thin interphases easy to be destroyed. In
addition, the stress concentration further damages the weaker
bonding. Consequently, the damping capacity of strongly
bonded interfaces is determined by two factors: the thickness
of the interphase and the stress concentration. The interface
damping can be described by utilizing the Eshelby inclusion
theory [30]. The interface damping caused by strongly bonded
interfaces is expressed as follows [29]:

Ds
I =

1

τ 2

1− υ
3π(2− υ)

1
V

n∑
i=1

d3
i (τ̄

2)i (4)

where Ds
I denotes the strongly bonded interfacial damping, τ

is the applied shear stress, υ is the Poisson ratio of the matrix
material, V is the volume of the sample, di is the radius of the
ith particle and (τ̄ )i is the component of τ in the plane that has
relative motion trends. The following assumption is made to
simplify the calculation: the CIPs share the same diameter d,
the shear stress of each particle is identical, denoted as τ̄i, and
the stress concentration coefficient τ̄i/τ is taken as 1.5, which
is the mean value from previous literature. Then the interface
damping can be simplified as

Ds
I =

4.5(1− υ)

π2(2− υ)
φ (5)

where φ is the volume fraction of CIPs.
Equation (5) indicates that the damping due to strongly

bonded interfaces is related to two variables: the content of
CIPs, φ, and the Poisson ratio, υ, of the matrix material;
the content of CIPs, φ, is an important factor in determining
the damping in the case of strongly bonded interfaces, and
this damping capacity is proportional to φ. In addition, the
polymer matrix used in MREs is mainly rubber, and the
Poisson ratio of different types of rubber changes little, and
usually is deemed to be constant (it usually takes a value of
0.48), and therefore the influence of the Poisson ratio, υ, can
be ignored.

2.2.2. Weakly bonded interface. Aside from the inherent
weakly bonded interfaces, increment of the strain amplitude
also helps to turn some strongly bonded interfaces into
weakly bonded interfaces. For the case of weakly bonded
interfaces, the dissipation energy is mainly caused by internal
friction between the matrix and the reinforced particles during
deformation. Therefore, the Coulomb law of friction [27] is
suitable for calculating the damping due to weakly bonded
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Figure 1. A schematic of the force conditions at the interface
where relative movement is likely to occur.

interfaces. In this case, the damping capacity is determined
by the friction coefficient between the two constituents and
the normal stress at the interface where relative movement is
likely to occur. A schematic diagram is shown in figure 1.

As shown in figure 1, the area that has relative movement
is denoted as S, ds is the increment of S. When the applied
strain amplitude is σ0, the normal stress at ds is denoted as
σn and the corresponding tangential stress is στ . The relative
displacement r(ε0 − εcr) occurs when the external stress is
sufficient to overcome the resistance generated by friction.
Here ε0 is the corresponding strain amplitude and εcr is the
critical strain of relative movement. Then, according to the
Coulomb law of friction, the friction on the area ds is given as

dEFτ = f Eσn ds× Eeτ . (6)

Here, f is the friction coefficient between the polymer matrix
and the CIPs and Eeτ is the tangential directional vector.

Since the carbonyl iron particles are treated as ideal balls,
and thus the contribution of the tangential stress is symmetric
in terms of the whole surface, and the corresponding
tangential stresses at the oppose positions of carbonyl iron
particles are parallel to each other, the contribution at the area
ds is expressed as

dw = (Eστ · ds+ dEFτ ) · dEu

= (Eστ · ds+ f Eσnds× Eeτ ) · dEu (7)

where dEu is the displacement of the carbonyl iron particle.
Similarly, the contribution of the tangential stress

contribution at the area ds′ is

dw′ = (Eσ ′τ × ds′ + dEF′τ ) · dEu

= (Eσ ′τ × ds′ + f Eσ ′nds× Eeτ ′) · dEu. (8)

By comparing dw and dw′, the contribution of the tangential
stress is obtained, which is 0. Then the corresponding
dissipation energy can be written as

dUdissipation = r(ε0 − εcr)fσnds. (9)

The dissipation energy in a unit MRE sample is obtained by
integrating dUdissipation over the whole interface, i.e.

Udissipation =

∑n
i=1

∮
r(ε0 − εcr)fσn ds

V

=
3π
4

fφσn(ε0 − εcr) (10)

where V is the volume of the MRE sample and φ is the volume
fraction of CIPs. Here the equation φ = 1

V

∑n
i=1Vi is utilized.

In addition, the elastic energy stored in the sample is
determined by the following equation:

Uelastic =
1
2σ

2
0 /E (11)

where σ0 is the external stress and E is the storage modulus
of the MRE sample. Then the damping capacity expressed by
the damping factor is derived and expressed as

Dw
I =

Udissipation

Uelastic
=

3π
2

fφσn(ε0 − εcr)

σ 2
0 /E

. (12)

Considering that in the case of weakly bonded interfaces εcr is
minimal and far less than ε0, equation (12) can be simplified
to

Dw
I =

3π
2

fφσn

σ0
. (13)

We denote ζ = σn/σ0 for convenience; it represents the
normal stress concentration coefficient at interface S with
a relative movement trend. In addition, the stress level at
the interface is not always larger than εcr, and thus relative
movement only takes place at part of the interface. Thus it is
reasonable to discount the results with a coefficient K (0 <
K < 1), and then equation (13) is transformed to

Dw
I =

3π
2

Kfφζ. (14)

Equation (14) indicates that in the case of a weakly
bonded interface, the interface damping is proportional to the
CIP content φ. Usually, the friction between the CIP and the
rubber material is taken as 0.15; ζ increases with the stress
level at the interface, and ranges from 1.1 to 1.3 [34]. As a
result, the damping due to weakly bonded interfaces increases
with the external stress.

The interfaces in MREs are a combination of both
weak bonds and strong bonds. Therefore the overall interface
damping in an MRE can be written as

DI = Ds
I + Dw

I = (1− ϕ)
4.5(1− υ)
π(2− υ)

φ

+ ϕ
3π
2

Kfφζ (15)

where ϕ = ϕ(σ0, ε0) is the proportion of weakly bonded
interface, and it increases with the particle content and the
applied strain amplitude. As estimated in [34], it is expressed
as

ϕ = (1− φ)1/3(1− ε0)
1/3. (16)
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Then equation (15) is simplified to

DI = [1− (1− φ)1/3(1− ε0)
1/3
]
4.5(1− υ)

π2(2− υ)
φ

+ (1− φ)1/3(1− ε0)
1/3 3π

2
Kfφζ

=
4.5(1− υ)

π2(2− υ)
φ +

(
3π
2

Kf ζ −
4.5(1− υ)

π2(2− υ)

)
× (1− φ)1/3(1− ε0)

1/3φ. (17)

Equation (17) indicates that the interface damping is closely
related to the applied strain amplitude and the content of the
reinforcing particles.

2.3. Magneto-mechanical hysteresis damping

Due to the existence of magnetic loss of ferromagnetic
reinforced materials, the energy dissipation of ferromagnetic
materials is more significant than that in non-magnetic
materials [31]. However, the magneto-induced damping in
MREs has not been considered in previous models. In this
work, the magneto-induced damping is investigated to fully
understand the damping properties of MRE materials. The
magnetic damping is a parameter that evaluates the capacity
of the magnetic loss. The magnetic loss includes three
main sources: the eddy current loss, the magneto-mechanical
hysteresis loss and the magnetic residual magnetism loss. The
eddy current loss is mainly caused by the cyclically alternating
magnetization. The alternating magnetic flux density induces
macroscopic eddy current loss, and the cyclic changing of
magnetic domains leads to microscopic eddy current loss.
Both the macro and micro eddy current loss are closely related
to the vibration frequency and they are independent of the
strain amplitude. However, the corresponding eddy current
loss is minimal when the strain amplitude exceeds 10−4 or the
magnetic particles reach saturated magnetization. Therefore,
eddy current losses are ignored in this study. Moreover,
the residual magnetism of the CIPs is negligible since they
are particles of a soft magnetic material. Consequently, the
magneto-elastic damping in MREs is mainly induced by the
magneto-mechanical hysteresis. Usually, devices based on
MREs work in vibration conditions. Therefore investigation
of the magneto-mechanical hysteresis damping is important.

Considering that the cyclic strain amplitude is small,
a model based on the Rayleigh loop [31] and Kornetzki’s
approach [32] is proposed to calculate the magneto-induced
dissipation energy, and the relationship between the elastic
modulus, E, and the applied strain, ε, can be given by

E = E0 + αε (18)

where E = E(ε) is the elastic modulus in correspondence to
the external strain ε, E0 is the initial elastic modulus without
applied strain and α = dE

dε . The corresponding stress is then
written as

σ = Eε = (E0 + αε)ε. (19)

Figure 2. (a) A schematic of the magnetic dipoles in a magnetic
field in response to the external strain ε. (b) An enlargement of part
of (a); the magnetic moments are Em1 and Em2 respectively.

The dissipation energy during one load circle is the area
of the strain–stress hysteresis loop, which is expressed as

1u =
∮
ε dσ = 4

3αε
3. (20)

Since the unit elastic energy of an MRE sample during
one load circle is expressed as

u = 1
2 Eε2, (21)

the damping of magneto-mechanical damping is determined
by

DM =
1

2π
1u

u
=

4
3π

αε

E
. (22)

To determine the damping capacity contributed by
magneto-mechanical hysteresis damping, the key issue is to
obtain the expression of the elastic modulus E.

It is widely accepted that the magneto-induced property
of MREs is caused by the magnetic dipole interactions
between adjacent particles in the same chain [24, 35]. Under
the driving of an external strain, the particle chains are
stretched and deviate from the direction of the magnetic field,
as shown in figure 2.

Figure 2 shows a schematic diagram of the deformation
of CIPs in a chain under the magnetic intensity EH. To simplify
the computation, the CIPs are assumed to share the same
shape (mean diameter d) and central distance r0. In addition,
the initial center distance between two adjacent particles is
also assumed to be identical, denoted by r0. As illustrated
in figure 2, the CIPs are aligned regularly in a chain, and
the length of the chain is assumed to be infinite. Upon
loading with a shear strain perpendicular to EH0, the deformed
particle chain deviates from the direction of the magnetic
field by θ degree, and the center distance is stretched to r.
Figure 2(b) illustrates the interaction between two adjacent
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CIPs. As mentioned before, the ferromagnetic CIPs are treated
as identical, and thus by denoting the magnetic domain of
the magnetic dipoles as Em, the interaction energy of the MRE
sample is determined [35] by

U = −
3Cφ| Em|2(ε2

− 2)

π2µ0µ1d3r3
0(ε

2 + 1)5/2
(23)

where φ is the content of CIPs. Then the stress induced by
the application of an external magnetic field is obtained by
differentiating the total interaction energy with respect to the
scalar shear strain, namely

σ =
dU

dε
=

9Cφε(4− ε2)| Em|2

π2µ0µ1d3r3
0(ε

2 + 1)7/2
. (24)

Similarly, the magneto-induced elastic modulus of an MRE is
expressed as

1E =
dσ
dε
=

9φC| Em|2(27ε2
− 4ε4

− 4)

r3
0π

2d3µ0µ1(1+ ε2)9/2
. (25)

By substituting equation (25) into (22), the damping capacity
of an MRE is obtained and simplified as

DM = (12φC| Em|2ε2(20ε4
− 205ε2

+ 90))(r3
0π

3d3µ0µ1

× E0(1+ ε2)11/2
+ 9πφC| Em|2(27ε2

− 4ε4
− 4)

× (1+ ε2))−1. (26)

Equation (26) indicates that the magneto-mechanical hys-
teresis damping of MREs is determined by the CIP
content φ and strain amplitude ε. The magneto-mechanical
hysteresis damping increases almost linearly with the CIP
content φ. However, the relationship between the magneto-
mechanical hysteresis damping and the strain amplitude is
quite complex. The magneto-mechanical hysteresis damping
increases nonlinearly with the strain amplitude. In order
to simplify the discussion, a term A(H0) is defined,
and A(H0) = µ0µ1χ [

1
1−(1/6)Cχ(d/r0)

3 ]. When the dipoles
approach magnetic saturation, As(H0) = 2.1 T [36]. Since
m = 1

6πd3A(H0), the saturation magnetization is approxi-
mated as ms = 0.35πd3. Therefore the magneto-mechanical
hysteresis damping is independent of the applied magnetic
field when the dipoles become magnetically saturated.

2.4. Overall damping

From the above analysis, the overall damping capacity of an
MRE is derived by substituting equations (3), (17) and (26)
into equation (1), and thus the overall damping capacity of an
MRE is rewritten as

DMRE = (1− φ)Dm +
4.5(1− υ)

π2(2− υ)
φ

+

(
3π
2

Kf ζ −
4.5(1− υ)

π2(2− υ)

)
× (1− φ)1/3(1− ε0)

1/3φ

+ (12φC| Em|2ε2(20ε4
− 205ε2

+ 90))[r3
0π

3d3

× µ0µ1E0(1+ ε2)11/2
+ 9πφC| Em|2

× (27ε2
− 4ε4

− 4)(1+ ε2)]−1. (27)

Usually, Dm ranges from 0.13 to 0.15, and Dm is taken as 0.14
in this study. The Poisson ratio of rubber materials is usually
0.48, and thus υ is taken as 0.48 here. K denotes the ratio of
interfaces that reach the critical value, which is taken as 0.5 in
this paper. The friction coefficient between natural rubber and
iron ranges from 0.13 to 0.17, and thus f takes the mean value
0.15. C is 1.2 when the particle number is large enough. The
initial center distance, r0, is usually taken as 1.25d, and the
permeability of rubber, µ1, is usually taken as 1; E0 is taken
as 1 MPa. Then equation (27) is transformed and simplified
into

DMRE = Dm +

(
29.7
3200

− Dm

)
φ +

(
29.7
3200

−
9.9π
80

)
× (1− φ)1/3(1− ε0)

1/3φ + (76.8φA2(H0)ε
2

× (20ε4
− 205ε2

+ 90))[150π2(1+ ε2)11/2

+ 57.6πφA2(H0)(27ε2
− 4ε4

− 4)

× (1+ ε2)]−1. (28)

By utilizing the Taylor expansion, (1+ε2)11/2 is simplified to
1+ 5.5ε2

+ 1.875ε4
+O(ε8), then equation (28) is simplified

to

DMRE = 0.14+ 0.1307φ + 0.0261(1− φ)1/3

× (1− ε0)
1/3φ + (76.8φA2(H0)ε

2

× (20ε4
− 205ε2

+ 90))[150π2(1+ 5.5ε2

+ 1.875ε4
+ 14.4375ε6)+ 57.6πφA2(H0)

× (27ε2
− 4ε4

− 4)(1+ ε2)]−1. (29)

As indicated in equation (29), the overall damping capacity is
closely related to the volume content of ferromagnetic CIPs,
φ, and the shear strain amplitude, ε. In addition, the overall
damping capacity is independent of the applied magnetic
intensity when the magnetic dipoles become saturated. In
order to verify these predictions, a series of experiments was
conducted, and this will be discussed in section 3.

It is essential to develop a microscopic model to get
a comprehensive understanding of the damping behavior of
MREs. Most of the reported damping models macroscopically
explain the damping behavior of MREs, and few reports have
been engaged in investigating the damping behavior of MREs
from a microscopic viewpoint. Compared to the microscopic
slip model [26], our model take the magneto-induced damping
into consideration. Ferromagnetic particles are important
components of MREs, thus it is improper to ignore the
magneto-induced damping. In addition, all the reinforced
particles are assumed to have a relative motion trend in the
slip model [26], which is the extreme condition. In our model,
we take into the bonding condition into consideration. By
referring to the method used in particle reinforced composites,
we classify the interfaces into two categories, strongly bonded
ones and weakly bonded ones; this is much closer to the
real situation. The interfacial bonding condition between the
reinforced particles and the matrix has also been considered
for modeling the damping property.

6
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Figure 3. The testing unit of the rheometer and its schematic diagram.

Figure 4. A comparison between the experimental and theoretical results for the relationship between the damping capacity and the CIP
content.

Figure 5. A comparison between the experimental and theoretical results for the relationship between the damping capacity and the strain
amplitude.

3. Verification and discussion

To verify the proposed model, a series of MRE samples was
manufactured based on our previous reported studies. In this
study, two groups of samples with different weight content
of CIPs were prepared. In the first group, the weigh contents
of CIPs were 0, 5, 10, 15 and 20 wt% respectively, and,
for simplicity, the samples were named as MRE-0, MRE-5,
MRE-10, MRE-15 and MRE-20 accordingly. In the second
group, the particle contents were 40, 50, 60, 70 and 80 wt%
separately, and these samples were denoted as MRE-40,
MRE-50, MRE-60, MRE-70 and MRE-80 accordingly.

In this study, the damping capacity of the samples was
measured by the rotating shear mode of a rheometer (Physica
MCR 301, Anton Paar Co.). The testing unit was constituted
by two parallel plates, as indicated in figure 3, the bottom one
was fixed, and the upper one could generate shear force by ro-
tating. The testing signal was obtained by a sensor connected

to the upper plate. A comparison between the experimental
and theoretical results is given in figures 4 and 5.

As shown in figure 4(a), this model predicts that the loss
tangent of the experimental result decreases with the particle
content when the CIP content is low (below 20 wt%), and
the experimental results follow this prediction quite well.
Figure 4(b) illustrates the relationship between the damping
capacities for samples with high CIP content. In figure 4(b),
both the experimental and theoretical damping increase with
the CIP content when the CIP content exceeds 40 wt%, and the
theoretical results nicely represent the experimental damping
behavior in all MRE samples. The experimental damping
follows the theoretical damping and changes slightly with the
magnetic intensity, as illustrated in figure 5(a). The theoretical
damping increases nonlinearly with the strain amplitude and
the rate of increase slows down with the strain amplitude in
figure 5(b). The experimental results behave consistently with
the experimental results.
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Figure 6. The relationship between damping capacity and strain
amplitude. The samples are MRE-0, MRE-5, MRE-10, MRE-15
and MRE-20, and they are tested without a magnetic field.

However, it is worth noting that the theoretical results
are larger than the experimental results, and this discrepancy
is caused by several reasons. Firstly, when calculating the
interface damping, the interfacial bonds are assumed to
be either strong or weak, i.e. we denote the proportion
of weakly bonded interface as ϕ, and then the strongly
bonded interface is 1 − ϕ. This assumption overestimates the
interfacial damping by assuming that all interfaces contribute
to the overall damping. Secondly, it is assumed that the
intrinsic damping is caused by the matrix material when
calculating the intrinsic damping, while the contribution
of the reinforced CIPs is ignored. However, as the CIP
content increases, the damping caused by the CIPs (both
intrinsic and interfacial damping) cannot be ignored, and thus
the theoretical results underestimate the intrinsic damping
capacity when the particle content is large. Thirdly, some
variables are difficult to obtain, and thus the mean values from
previous literatures are used in the calculation. For instance,
the damping capacity of natural rubber ranges from 0.116
to 0.233 [34], and in this study it is assumed to be 0.140.
Consequently, the discrepancy between the theoretical results
and the experimental results is inevitable. In the following
sections, each type of damping will be discussed.

3.1. Intrinsic damping

The intrinsic damping is described by equation (5), which
indicates that the intrinsic damping is closely related to the
intrinsic damping of the matrix material and decreases with
the CIP content. However, the other two kinds of damping
are also closely related to the particle content, and therefore
it is necessary to minimize the interference of the other
kinds of damping so as to fully understand the contribution
of the intrinsic damping. As analyzed in section 2, the
interface damping and the magneto-mechanical damping
increase with the strain amplitude and CIP content, and the
intrinsic damping will play a dominant role when the CIP
content is low. Therefore, a series of MRE samples (MRE-0,
MRE-5, MRE-10, MRE-15 and MRE-20) was fabricated so

Table 1. The damping capacities of different samples under
different strain amplitudes.

Sample

Strain amplitude

0.20% 0.40% 0.60% 0.80%

MRE-0 0.1313 0.1449 0.1581 0.1715
MRE-5 0.1240 0.1360 0.1475 0.1608
MRE-10 0.1156 0.1271 0.1396 0.1502
MRE-15 0.1091 0.1191 0.1312 0.1403
MRE-20 0.1023 0.1128 0.1243 0.1328

as to investigate the intrinsic damping. Without an applied
magnetic field, these samples were tested under the same
strain amplitudes of 0.2%, 0.8%, 1.4% and 2.0% respectively,
in order to eliminate the influence of interface damping and
magneto-mechanical damping. The experimental results are
shown in figure 6 and table 1.

In figure 6, firstly, the damping capacity (loss tangent
tan δ) of all samples decreases with the CIP content φ. As
indicated in table 1, the loss tangents, tan δ, of samples
MRE-0, MRE-5, MRE-10, MRE-15 and MRE-20 are 0.1313,
0.1240, 0.1156, 0.1091 and 0.1023 respectively when tested
under a strain amplitude of 0.2%. Namely, the damping
of all samples decreases with CIP content φ. Secondly,
although the loss tangent decreases with the CIP content,
the damping discrepancy between samples decreases with
the strain amplitude. As indicated in table 1, the loss
tangents, tan δ, of the samples MRE-5 and MRE-15 are
0.1240 and 0.1091 respectively at a strain amplitude of
0.2%, and the damping of MRE-5 is 0.0149 larger than that
of MRE-15. However, the damping values for MRE-5 and
MRE-15 at a strain amplitude of 0.8% are 0.1608 and 0.1403
respectively; the damping of MRE-5 is 0.0205 larger than that
of MRE-15. In other words, the damping discrepancies caused
by increasing the strain amplitude from 0.2% to 0.8% are
0.0149 and 0.0205 respectively. Thirdly, figure 6 indicates that
the tan δ decreases with the strain amplitude in each sample.
For instance, in table 1, the damping capacities of MRE-10
(tan δ) are 0.1156, 0.1271, 0.1396 and 0.1502 in response to
strain amplitudes of 0.2, 0.4%, 0.6% and 0.8%.

The reasons for this damping behavior are as follows.
First, as indicated in equation (5), the loss tangent tan δ is
determined by the CIP content φ, since the intrinsic damping
capacity of CIPs is negligible compared with the damping
of polymer matrix material. In equation (5), tan δ decreases
with the CIP content. However, ignoring the intrinsic damping
may cause a discrepancy between the theoretical and the
experimental results when the CIP content is high. Moreover,
the interface damping increases with the CIP content. Thus,
intrinsic damping no longer play a predominant role in the
overall damping when the CIP content is high, and the
contributions of the other two kinds of damping to the overall
damping cannot be ignored when the CIP content is high.

3.2. Interface damping

As indicated in section 2.2, the interface damping begins
to play a dominant role when the CIP content or the strain
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Figure 7. The relationship between damping capacity and strain
amplitude. The samples used are MRE-40, MRE-50, MRE-60,
MRE-70 and MRE-80, without a magnetic field applied.

Figure 8. The relationship between damping capacity and strain
amplitude. The samples used are MRE-40, MRE-50, MRE-60,
MRE-70 and MRE-80, without a magnetic field applied.

amplitude is high. Thus, the damping capacities of a series
of MRE samples (MRE-40, MRE-50, MRE-60, MRE-70 and
MRE-80) were measured under different strain amplitudes.
The CIP content of this group of MRE samples was high so as
to decrease the interference of intrinsic damping. The results
are shown in figures 7 and 8 and table 2.

As shown in figure 7, firstly, the damping capacities
of all the samples increase with the strain amplitude, but
the rates of increase slow down with the strain amplitude.
Secondly, the damping of all samples increases with CIP
content φ when tested under the same strain amplitude. In
addition, as shown in figure 8, the damping of all samples
increases with the CIP content and the strain amplitude.
Moreover, as the strain amplitude increases, the damping
increment of MRE-80 is larger than that of MRE-40. Table 2
further validates the aforementioned information. On the one
hand, tan δ increases with φ in all samples. For instance,
the damping capacities, tan δ, of samples MRE-40, MRE-50,
MRE-60, MRE-70 and MRE-80 are 0.1427, 0.1522, 0.1838,
0.2223 and 0.2440 respectively under a strain amplitude of
0.2%, and the tan δ increases with the CIP content. On the
other hand, the damping capacity of each sample increases
with the strain amplitude. For example, tested under strain

Table 2. The damping capacities of different samples under
different strain amplitudes.

Sample

Strain amplitude

0.20% 0.80% 1.40% 2.00%

MRE-40 0.1427 0.1953 0.2188 0.2341
MRE-50 0.1522 0.2205 0.2509 0.2706
MRE-60 0.1838 0.2625 0.3065 0.3402
MRE-70 0.2223 0.3027 0.3496 0.3813

amplitudes of 0.2%, 0.8%, 1.4% and 2.0%, the damping
capacities of MRE-40 are 0.1427, 0.1953, 0.2188 and 0.2341
respectively, and the damping capacity increases with the
strain amplitude. The dependence between tan δ and the strain
amplitude is applicable to samples with arbitrary CIP content.
In addition, although the loss tangent increases with the strain
amplitude in all samples, the increment in damping capacity
slows down with the strain amplitude. For instance, the loss
tangent of MRE-40 increases by 0.0526 when the strain
amplitude increases from 0.2% to 0.8% (increment of 0.6%).
However, the corresponding increment in loss tangent is only
0.0153 when the strain amplitude increases from 1.4% to
2.0% (increment of 0.6%). The increment in damping capacity
decreases with the strain amplitude. c

The reasons for this damping behavior are as follows.
Firstly, both the strongly bonded interface damping and
the weakly bonded interface damping increase with the
CIP content and strain amplitude, and thus the interfacial
damping increases with φ and ε. Secondly, as indicated in
equation (16), the proportion of weakly bonded interface
increases with CIP content, making the weakly bonded
interfacial damping increase with the CIP content. However,
the strongly bonded interfacial damping in turn decreases
with the CIP content. Consequently, although the interface
damping of all samples increases with the strain amplitude,
the rate of increase of interfacial damping slows down with
the CIP content. This is the same as the relationship between
the damping capacity and the strain amplitude, and therefore
the damping capacity of all samples increases with the strain
amplitude, but the rate of increase slows down with the strain
amplitude.

3.3. Magneto-mechanical hysteresis damping

As indicated in equation (26), the damping capacity of MREs
is directly related to the strain amplitude and the CIP content.
Therefore, the samples MRE-40, MRE-50, MRE-60, MRE-70
and MRE-80 were tested with different magnetic intensities
and strain amplitudes. At first, the samples were tested at a
strain amplitude of 0.2% with different magnetic intensities.
Then the samples were tested at different strain amplitudes
without a magnetic field. Figures 9, 10 and table 3 illustrate
the corresponding results.

As shown in figure 9(a), the damping capacities of all
MREs samples change slightly with the external magnetic
intensity. Moreover, when the same strain amplitude is
applied, the damping capacity of MREs increases with CIP
content φ. In figure 9(b), the damping capacity of each sample
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Figure 9. The relationship between the damping capacity and the magnetic field. The samples are MRE-40, MRE-50, MRE-60, MRE-70
and MRE-80. (a) The samples are tested under different magnetic intensities and a strain amplitude of 0.2%. (b) The samples are tested with
different strain amplitudes, without a magnetic field.

Figure 10. The damping capacities of MREs tested under different
magnetic intensities. The strain amplitude is 0.2%.

increases with the strain amplitude, and the rate of increase
approximately follows the prediction in equation (26). As
illustrated in figure 10, when tested under the same magnetic
intensity, the damping capacity of each MRE sample increases
with the CIP content. In addition, the damping capacity of the
same MRE sample tested under different magnetic intensities
changes slightly. Table 3 quantitatively demonstrates the
aforementioned conclusions. Firstly, the damping capacity of
all MRE samples with different φ fluctuates insignificantly
with the magnetic intensity. For instance, tested under
magnetic intensities of 0, 0.2 T, 0.4 T, 0.6 T and 0.8 T,
the corresponding loss tangents of sample MRE-40 are
0.1288, 0.1307, 0.1309, 0.1307 and 0.1305 respectively.
The maximum deviation is 1.63%. This can be explained
by equation (26): the damping capacity of an MRE is
independent of the magnetic intensity when the dipoles
reach magnetic saturation. The experimental results further
indicate that the contribution of the magneto-mechanical
hysteresis damping is much smaller than that of the interfacial
damping, and thus the magneto-induced damping does not
cause significant changes in the overall damping. Secondly,
when tested under the same magnetic intensity, the damping
capacities of all MRE samples increase with CIP content. For
example, the tan δ values for the samples MRE-40, MRE-50,
MRE-60, MRE-70 and MRE-80 are 0.1305, 0.1418, 0.1722,

Table 3. The damping capacities of different samples under
different magnetic intensities.

Sample

Magnetic intensity

0 0.2 T 0.4 T 0.6 T 0.8 T

MRE-40 0.1288 0.1307 0.1309 0.1307 0.1305
MRE-50 0.1459 0.1440 0.1443 0.1436 0.1418
MRE-60 0.1649 0.1710 0.1722 0.1722 0.1722
MRE-70 0.2080 0.2028 0.2024 0.2016 0.2005
MRE-80 0.2391 0.2408 0.2410 0.2411 0.2408

0.2005 and 0.2408 accordingly under an applied magnetic
intensity of 0.8 T.

4. Conclusions

In this research, a theoretical model is developed to analyze
the damping behavior of MREs. MREs are treated as special
particle reinforced composites with novel magneto-induced
properties. The overall damping is found to be directly related
to the CIP content and strain amplitude. Furthermore, the
damping of MREs is constituted by three categories: the
intrinsic damping, the interface damping and the magneto-
mechanical hysteresis damping. The intrinsic damping plays a
dominant role when the CIP content and strain amplitude are
low, and thus the overall damping decreases with the content
of CIPs at low CIP content. However, the interface damping is
predominant at higher strain amplitude or higher CIP content,
and thus the overall damping increases with the CIP content
and strain amplitude. Moreover, the magneto-mechanical
hysteresis damping increases nonlinearly with the strain
amplitude. When the dipoles in an MRE reach saturation, the
damping is independent of the magnetic field. In addition, a
series of experiments was conducted to verify the theoretical
results; the theoretical results were found to fairly represent
the experimental results, and thus provide guidance for the
fabrication of MREs with controllable damping capacity.
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