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A B S T R A C T

Soft magnetorheological elastomers (s-MRE) are a smart material mainly prepared by filling soft magnetic
particles into an elastomeric matrix. Under the influence of a magnetic field, the mechanical properties of
the material can be changed rapidly and reversibly, offering a broad application prospect in vibration control,
magnetic actuation and other areas. Due to the embedding of the magnetic particles, an obvious stress-softening
phenomenon (Mullins effect) and magnetic-dependent nonlinear viscoelasticity are exhibited for the s-MRE.
Recent theoretical studies mainly focused on modelling the magnetostriction and the magnetic-dependent
hyperelastic behaviour of s-MRE, while less attention is paid to modelling its magnetic-dependent inelastic
behaviour. However, the stress-softening and the magnetic-dependent nonlinear viscoelastic behaviour play
a vital role in the application of s-MRE. In order to predict the magneto-mechanical coupling behaviour of
s-MRE accurately, a constitutive model which incorporates the Mullins effect and the magnetic-dependent
nonlinear viscoelastic behaviour of isotropic s-MRE is proposed. The comparison between the simulation
and experimental results indicates that the residual strain, magnetic-dependent Mullins effect and nonlinear
viscoelastic behaviour of isotropic s-MRE are well depicted by the model. The developed model provides a
theoretical basis for the design and application of isotropic s-MRE in vibration control, magnetic drive and
other fields and promotes its potential application.
1. Introduction

Soft magnetorheological elastomers (s-MRE) are a smart material
fabricated by embedding soft magnetic particles (such as carbonyl iron
and Fe3O4) into the elastomeric matrix. Under a magnetic field, the
mechanical properties such as the modulus and damping of s-MRE can
be changed rapidly and reversibly (Jolly et al., 1996; Abramchuk et al.,
2007). By utilizing the modulus magnetic stiffening effect, applications
of s-MRE in the areas of vibration control (Lin et al., 2023; Fu et al.,
2016; Gao et al., 2021), acoustic metamaterial (Chen et al., 2022) and
bionic design (Hong et al., 2022) have been explored. Moreover, due
to the soft nature of the elastomeric matrix and the large magnetic
permeability of s-MRE, traction is induced at the s-MRE-air interface
if a magnetic field is applied. Due to the magnetic-induced traction,
an obvious magnetostriction of the s-MRE is exhibited. Studies inves-
tigating the magnetostriction mechanism of s-MRE in cardiovascular
surgery (Hooshiar et al., 2021), haptic displays (Psarra et al., 2017,
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2019) and tissue engineering (Moreno-Mateos et al., 2022) have been
conducted.

To promote the application of s-MRE, a constitutive model which
can accurately depict the magneto-mechanical coupling behaviour of s-
MRE is needed. As a special filler rubber, a pronounced stress-softening
associated with residual strain and nonlinear viscoelasticity displays for
the s-MRE. Furthermore, the interaction between magnetic particles
and the polymer matrix under a magnetic field leads to a magnetic-
dependence on the mechanical behaviour of s-MRE. Significant effort
has been made to model the magneto-mechanical coupling behaviour of
s-MRE. Primarily, Jolly et al. (1996) utilized the magnetic dipole theory
to simulate the quasi-static magnetic-dependent mechanical behaviour
of s-MRE. Subsequently, Zhu et al. (2006) extended the model by
considering the influence of adjacent chains. Wang and Kari (2019a,b)
and Zhu et al. (2020) incorporated a fractional derivative element
to predict the viscoelastic behaviour of s-MRE under an infinitesimal
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strain assumption. However, due to the soft nature of s-MRE, a fi-
nite strain range should be applied to depict its magneto-mechanical
coupling behaviour. Pioneering work to develop a theoretical frame-
work for MRE based on continuum mechanics and electrodynamics
was performed by Brown (1966) and Dorfmann and Ogden (2014).
Subsequently, the homogenization method was incorporated into the
model by Galipeau and Castaneda (2013), Zabihyan et al. (2020),
Lefèvre et al. (2017) and Mukherjee et al. (2020). Bustamante (2010)
and Shariff et al. (2017) extended the model to anisotropic case. Psarra
et al. (2017, 2019) and Rambausek and Danas (2020) proposed a fully
coupled magneto-mechanical finite element computational platform
to simulate the behaviour of an isotropic s-MRE film rested on a
non-magnetic elastomer. Based on these studies, the magnetostriction
behaviour of isotropic s-MRE under a relatively slow magnetic load-
ing rate can be predicted with accuracy. Unlike the work by Psarra
et al. (2017, 2019) and Rambausek and Danas (2020); where the
Helmholtz free energy is additively decoupled into hyperelastic and
pure magnetic parts, Saxena et al. (2013), Haldar et al. (2016) and
Haldar (2021) proposed a multiplicatively-typed free energy function
to depict the modulus magnetic stiffening effect and viscoelastic be-
haviour of isotropic s-MRE. Rambausek et al. (2022) and Lucarini
et al. (2022a) extended the viscoelastic model by incorporating the
microstructurally guided homogenization method. Although the vis-
coelastic models proposed by Saxena et al. (2013), Haldar et al. (2016)
and Haldar (2021) fulfil the dissipation inequality, the viscosity is
assumed to be a process-independent value. However, as a special filler
rubber, a typical nonlinear viscoelastic behaviour is exhibited for s-
MRE. For instance, experimental studies by Blom and Kari (2005),
Lejon and Kari (2013) and Bastola and Hossain (2020) indicated that
the dynamic modulus of isotropic s-MRE decreases with increasing
strain amplitude. Relaxation test by Qi et al. (2017) and Nam et al.
(2021, 2022) demonstrated that a longer relaxation time is needed for
the isotropic s-MRE if a larger magnetic field is applied. Therefore, a
more elaborated constitutive model with a process-dependent viscosity
evolution law is needed to depict the magnetic-dependent nonlinear
viscoelastic behaviour of isotropic s-MRE.

Turning away the attention from the theoretical study of MRE to
regular filler rubber for a while, the Mullins effect of filler rubber is
well known. In particular, a typical and irreversible stress-softening
effect (Harwood et al., 1965) displays for the filler-embedded rubber
whenever the load increases beyond the maximum value in loading
history. Besides the Mullins effect, other inelastic effects arise un-
der loading and unloading. For example, the stress–strain curves for
filler rubber are essentially rate-dependent (Amin et al., 2006; Moreno
et al., 2021). Additionally, a residual strain (Dorfmann and Ogden,
2004), where the tested sample does not return to its original shape
after unloading, is also encountered. Constitutive models based on
the microscopic damage mechanism to explain the Mullins effect can
be found in Govindjee and Simo (1991), Kilian et al. (1994) and
Marckmann et al. (2002). The review paper by Diani et al. (2009)
attributed the Mullins effect to three possible microscopic mechanisms,
i.e., the changes in the filler-matrix relation, filler network and the
damage in the rubber matrix. Contrary to the microscopically guided
model, Ogden and Roxburgh (1999) proposed a pseudo-elastic phe-
nomenological model and Simo (1987) proposed a damage model to
describe the stress-softening behaviour of filler rubber. Dorfmann and
Ogden (2004) extended the pseudo-elastic model by introducing an
additional internal variable to reflect the residual strain. Regarding
the modelling of the rate dependency for polymer, numerous studies
are in the scope of continuum mechanics. Some representative studies
related to this manuscript are pointed out below for brevity. Reese
and Govindjee (1998) proposed the finite strain nonlinear viscoelastic
theory. Primarily, a simple evolution equation where a linear rela-
tion between the inelastic strain rate and the overstress is assumed.
However, such a linear assumption is not consistent with test re-
2

sults. Subsequently, Bergström and Boyce (1998), Hoefer and Lion
(2009) and Amin et al. (2006) proposed nonlinear process-dependent
viscoelastic models. The basic assumption is that other constitutive
quantities, such as the viscous strain and the total strain, influence
the overstress-dependence of the inelastic strain rate. Theoretically,
the above-mentioned inelastic effects (Mullins effect, nonlinear vis-
coelasticity) of filler rubber are often studied separately. However,
in practice, these inelastic behaviours occur simultaneously in a cou-
pled manner. The situation is more complicated for isotropic s-MRE
since there is an obvious magnetic-dependence of the mechanical be-
haviour for isotropic s-MRE besides the Mullins effect and the nonlinear
viscoelasticity.

To promote the application of mre, a constitutive model incorporat-
ing the magnetic-dependent Mullins effect and the nonlinear viscoelas-
ticity is needed to describe complex inelastic behaviours of s-MRE. For
instance, the more accurate the constitutive model is in predicting the
stress–strain relationship for the s-MRE, the more effective the con-
troller will be in attenuation the vibration for the application of MRE in
vibration control area. If the influence of the Mullins effect is not taken
into account, an overestimation of the force response for MRE-based
vibration devices during operation encounters. Subsequently, due to
the deviation between the actual and predicted response, the vibration
control effect may deteriorate to a large extent.

Based on the research status of s-MRE constitutive modelling men-
tioned above, a constitutive model which includes stress-softening,
residual strain and magnetic-dependent nonlinear viscoelastic
behaviour is proposed for the isotropic s-MRE. The organization of this
paper is as follows. In Section 2, the fabrication process and the uniaxial
tension experiments to characterize the magnetic-dependent Mullins
effect and the stress relaxation of the isotropic s-MRE are introduced. In
Section 3, the fundamentals of kinematics and magnetic field equations,
along with the thermodynamic inequality for the model, are presented.
Subsequently, the specific constitutive equations to describe the Mullins
effect, residual strain and the nonlinear viscoelastic behaviour of the
isotropic s-MRE are proposed in Section 4. Besides, the parameter
identification process and model verification are conducted. Finally,
the conclusions and outlook of this paper are summarized in Section 5.
Regarding the numerical implementation algorithms corresponding to
the model, details are shown in Appendix. Regarding the contribution
of this work, firstly, the digital image correlation technology (DIC)
and the magnetic excitation component are integrated into the dy-
namic mechanical analyzer to characterize the magneto-mechanical
coupling behaviour of isotropic s-MRE. Secondly, a new constitutive
model based on the experimental test results is established to de-
pict the magnetic-dependent Mullins effect and nonlinear viscoelastic
behaviour of isotropic s-MRE. The developed model can provide a
theoretical basis for predicting the process and magnetic-dependent
nonlinear mechanical behaviour of isotropic s-MRE, thereby facilitating
designs of MRE-based devices.

2. Material fabrication and experimental characterization

In this section, the fabrication process, the experimental test setup,
and the test results for the magnetic-dependent Mullins effect and stress
relaxation of the isotropic s-MRE are presented.

2.1. Sample preparation and magnetic test results

To prepare isotropic s-MRE samples, firstly, carbonyl iron par-
ticles (CIPs, type CN, BASF, Germany diameter 7 μm on average),
polydimethylsiloxane (PDMS) and cross-linking agent are mixed in a
mass ratio of 140:60:3. The PDMS and cross-linking agent belong to
SylgardTM 184 silicon elastomer kit, purchased from Dow Corning,
United States. After mixing for 5 min, the mixture is put into a vac-
uum chamber under a pressure of 0.06 MPa to remove air bubbles.
Afterwards, the mixture is poured into a rectangular mould with a

thickness of 2 mm for curing. During the curing process, no magnetic
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Fig. 1. Microscopic morphology of the isotropic s-MRE sample profile captured by a
SEM.

field is applied, and the temperature is fixed at 100 ◦C. After curing for
30 min, the fabricated isotropic s-MRE is cut into test samples with a
size of 2 × 10 × 45 mm3. The microscopic morphology of the fabricated
isotropic s-MRE is obtained by a scan electron microscopy (SEM, Philips
of Holland, model XL30 ESEM-TMP). As shown in Fig. 1, the CIPs are
randomly distributed within the matrix, indicating the isotropy of the
material.

The magnetization property of the isotropic s-MRE is tested by a
magnetic measurement system (model MPMS3, Quantum Design, USA),
and the results are shown in Fig. 2. Due to the magnetically soft
nature of the carbonyl iron particles, the area enclosed by the magnetic
hysteresis loop is very small. Furthermore, as shown in Fig. 2, the
magnetization intensity of the isotropic s-MRE increases with increasing
magnetic field strength until a magnetic saturation is reached. More-
over, by comparing the hysteresis curves in different directions, it can
be seen that the sample is magnetic isotropy.

2.2. Magnetic-dependent Mullins effect and stress relaxation test results

A schematic diagram of the detailed experimental setup is shown in
Fig. 3. The magnetic-dependent mechanical behaviour of the isotropic
s-MRE is characterized by a series of uniaxial tensile tests using an
Electro-Force 3200 Dynamic Mechanical Analyzer (DMA) from TA
Instrument Inc. Two pairs of permanent magnets with a diameter of
60 mm are utilized to apply different magnetic (0.26 and 0.49 T) for
the test sample, respectively. The magnetic field is measured by a Tesla
meter with the sample inserted between the permanent magnets. The
fluctuation of magnetic field on the interface between air and isotropic
s-MRE does not exceed 20 mT, so the magnetic field is almost uniform
when passing through the interface. A high-resolution CCD camera
(MV-CA050-11UM, Hikvision, China) is used to record the deformation
of the test sample and a digital image correction (DIC) technology
(e.g., Landauer et al. (2019) and Li et al. (2022)) is applied to obtain
the corresponding strain. Additionally, the displacement field of the
sample in the 9 × 9 mm2 region of interest with a tensile amplitude
of 3.6 mm is shown in Fig. 4. From the displacement field contour
plots shown in Fig. 4(b), it can be found that the displacements 𝑢𝑥 and
𝑢𝑦 vary linearly along the 𝑥− and 𝑦−directions, demonstrating that a
homogeneous deformation is achieved for the test sample.

During experimental testing, firstly, the magnetic-dependent
Mullins effect and the viscoelastic behaviour of the isotropic s-MRE
are tested separately to stimulate the constitutive modelling. After-
wards, triangular strain loading with consecutively increasing strain
amplitudes under a relatively fast loading rate where the Mullins
effect and the viscoelastic behaviour of the isotropic s-MRE occur in
a coupled manner is conducted to validate the constitutive model.
Furthermore, sinusoidal wave loading with different frequencies and
strain amplitudes is used to further illustrate the predictive ability
of the model for viscoelastic behaviour. Details regarding the model
3

validation test will be introduced in Section 4. In addition, the selected
strain amplitudes are pre-stated before the detailed experimental pre-
sentation. The initially selected displacement amplitudes are 2.0, 2.8,
and 3.6 mm, corresponding to strain values of 10, 14, and 18%. The
reason for choosing these three strain amplitudes is that in this strain
range (less than 18%), the magneto-rheological effect of the isotropic s-
MRE is obvious and stable. Some previous test results (e.g. Schubert and
Harrison (2015) and Norouzi et al. (2016)) indicated that the magneto-
rheological effect will be degraded if the strain is further increased.
Since the work in this manuscript aims to guide the application of the
isotropic s-MRE in the vibration control area that requires obvious and
stable magneto-rheological effects, the three kinds of strain amplitude
10.0, 14.0 and 18.0% are selected. After applying loading, a slight
slippage of the test sample between the two grips is encountered,
and the strain detected by the DIC technology is a bit smaller than
the original values where the corresponding values change into 9.0,
12.6 and 16.2%. For the following model development and parameter
identification, the strain detected by the DIC technology is utilized
directly.

To study the magnetic-dependent inelastic behaviours of the
isotropic s-MRE, quasi-static tensile and stress relaxation tests are
conducted. Specifically, a three-cycle triangular strain loading with
consecutively increasing strain magnitudes (9.0, 12.6 and 16.2%) is
applied to characterize the Mullins effect and the residual strain of the
sample. The strain rate is set to 9.0 × 10−6 s−1 in the current tensile
test to dismiss the rate dependency on the test result. Three magnetic
fields of 0, 0.26 and 0.49 T are applied to reflect the influence of the
magnetic field on the Mullins effect. The application of magnetic field
results in the Maxwell force. To eliminate the influence of the Maxwell
force on the subsequent test results, the positions of the mechanical
grips as shown in Fig. 3 are adjusted prior to the main measurements to
make sure that the internal stress caused by the Maxwell force is fully
released. On the other hand, since the magnetic induced strain is at
the order of 1% (0.49 T), the influence to the test result can be almost
negligible. Besides the quasi-static tensile tests, stress relaxation tests
under a strain rate of 4.5 × 10−2 s−1 with different strain amplitudes
(9.0, 12.6 and 16.2%) and magnetic fields (0, 0.26 and 0.49 T) are con-
ducted to characterize the magnetic-dependent viscoelastic behaviour
of the isotropic s-MRE. To guarantee the reliability of the test results,
the tests mentioned above are repeated three times, and the mean value
is taken as the final data.

The quasi-static tensile and stress relaxation test results are shown in
Figs. 5 and 6, respectively. The mechanical behaviour of the isotropic
s-MRE exhibits an obvious magnetic-dependence. Specifically, for the
quasi-static tensile test, the peak stress at 16.2% strain at 0 and 0.49 T
are 0.239 and 0.260 MPa, respectively. In addition, it is worth noting
that even when a very slow strain rate is applied in quasi-static testing,
there is an energy dissipation, as demonstrated by the area enclosed
for the stress–strain curve in Fig. 5. As reported by Li and Yang (2014),
this effect may be caused by the microscopic damage of the material.
In addition, in order to illustrate the coupling between the Mullins
effect and the magnetic field, as well as the coupling between the
viscoelasticity and the magnetic field, the experimental results obtained
by the triangular loading with a faster strain rate are needed. Therefore,
the test data by the triangular loading with a faster loading rate are
displayed herein in Fig. 7 as well. As shown in Fig. 7, compared with
the results in Fig. 5, a higher peak stress is encountered if a faster
loading rate is applied.

3. Fundamentals of continuum mechanics and electromagnetics

Due to the soft nature of the elastomeric matrix and the magneto-
mechanical coupling behaviour of isotropic s-MRE, continuum mechan-
ics and electromagnetism theory are utilized to depict the magnetic-
dependent mechanical behaviour of isotropic s-MRE. In this section,
firstly, the fundamental continuum mechanics and magnetic equations
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Fig. 2. Hysteresis curves in two directions for the isotropic s-MRE sample captured by the magnetic measurement system (the white mark is used to distinguish the position of
the sample relative to the magnetic field).
Fig. 3. Schematic diagrams of the DMA test system with external magnetic field generator and strain measuring system. Left: overall structure diagram of the test system. Middle:
Local magnification diagram of the isotropic s-MRE sample under magnetic field and strain loading. Right: Comparison of magnetic field and sample size.
Fig. 4. The displacement results of the isotropic s-MRE sample in a 9 × 9 mm2 region of interest obtained by the DIC technology. (a) Region of interest before and after deformation.
(b) Contour plots of displacements 𝑢𝑥 and 𝑢𝑦.
are introduced. Afterwards, the stress and the magnetic flux density
are obtained by the constitutive equation fulfilling the Clausius–Planck
thermodynamic inequality. In this text, lowercase italics are applied
for scalars and bold letters are applied for first- and second-order
tensors. Unless stated, an overline denotes the volume-preserving part
of strain tensors and a dot above a second-order tensor denotes the time
derivative of the tensor, respectively.

3.1. Frame of kinematics

As shown in Fig. 8, the reference configuration without magnetic
and mechanical loading is 𝛺 . After loading, a typical material
4

reference
point with a position vector 𝐗 deforms from 𝛺reference to the current
position 𝐱 in 𝛺current . The corresponding deformation gradient 𝐅 is

𝐅 = Grad𝝌(𝐗, 𝑡), (1)

where 𝝌(𝐗, 𝑡) denotes the motion and 𝑡 is time. Grad represents the
gradient operator with respect to 𝐗. The left and right Cauchy–Green
strain tensors are 𝐛 = 𝐅𝐅T and 𝐂 = 𝐅T𝐅, respectively. To ensure
the future possible finite element implementation based on the mod-
elling work, the isotropic s-MRE is assumed to be quasi-compressible.
Consequently, the deformation gradient is multiplicatively decomposed
into a volume-changing part 𝐽 = det(𝐅) and a volume-preserving part
𝐅 = 𝐽−1∕3𝐅 (Simo, 1987). Furthermore, the theoretical path of the
finite strain viscoelastic theory (e.g., Lubliner (1985) and Reese and
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Fig. 5. Experimental (Exp) and simulation (Sim) results of the quasi-static loading tests (9.0×10−6 s−1) under different magnetic fields (0, 0.26 and 0.49 T) with increasing strain
magnitudes (9.0, 12.6 and 16.2%), where experimental scatter is shown in the light-coloured regions of the stress-time curves.
Fig. 6. Experimental (Exp) and simulation (Sim) results of stress relaxation tests under different magnetic fields (0, 0.26 and 0.49 T) and strain amplitudes (9.0, 12.6 and 16.2%),
where experimental scatter is shown in the light-coloured regions of the stress-time curves.
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Govindjee (1998)) is followed to depict the viscoelastic behaviour of
the isotropic s-MRE. Subsequently, the unimodular deformation gradi-
ent 𝐅 is further multiplicatively decomposed into an elastic part 𝐅

e
and

viscous part 𝐅
v

in the form of

𝐅 = 𝐅
e
𝐅
v
. (2)

The corresponding unimodular elastic and viscous right Cauchy–Green
tensors are 𝐂

e
= 𝐅

eT
𝐅
e

and 𝐂
v
= 𝐅

vT
𝐅
v
, respectively. The symbol 𝐒

n Fig. 8 denotes the second Piola–Kirchhoff stress in the reference
onfiguration and 𝝈 = 𝐽−1𝐅𝐒𝐅T is the Cauchy stress in the current
onfiguration.

The symbols 𝐁R and 𝐇R in Fig. 8 denote the magnetic flux density
nd magnetic field strength in the reference configuration, respectively.
he equivalent ones in the current configuration are 𝐁 and 𝐇. Accord-

ing to the nonlinear magneto-elastic interaction theory by Dorfmann
and Ogden (2014), these four magnetic variables are connected by

𝐁R = 𝐽𝐅−1𝐁 (3)

and
T
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𝐇R = 𝐅 𝐇. (4) e
The boundary conditions for 𝐁 and 𝐇 are

𝐧 × [[𝐇]] = 𝟎 (5)

and

𝐧 ⋅ [[𝐁]] = 0, (6)

where [[(∙)]] = (∙)outside − (∙)MRE and 𝐧 is the normal direction at the
nterface between the isotropic s-MRE and the external environment.
he symbols × and ⋅ are cross and dot product operators. In vacuum,

= 𝜇0𝐇, (7)

here 𝜇0 = 1.256 × 10−6 T m A−1 is the permeability of vacuum.

.2. Thermodynamic consistency

Following the standard convention of continuum mechanics, the
elmholtz free energy function is defined as the energy present per
nit volume in the material. To depict the magnetic-dependent Mullins

ffect, viscoelasticity and the magnetization behaviour of the isotropic
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Fig. 7. Experimental (Exp) and simulation (Sim) results of dynamic loading tests (4.5×10−2 s−1) under different magnetic fields (0, 0.26 and 0.49 T) with increasing strain amplitudes
9, 12.6 and 16.2%), where experimental scatter is shown in the light-coloured regions of the stress-time curves.
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Fig. 8. Schematic configuration of the reference, intermediate and current configura-
tions for isotropic s-MRE with the corresponding magnetic vectors and the stress and
strain tensors.

s-MRE, the total Helmholtz free energy is decoupled into four parts as

𝛹 = 𝛹Mullins + 𝛹magnetic + 𝛹mve + 𝛹 vol, (8)

where 𝛹Mullins, 𝛹magnetic, 𝛹mve and 𝛹 vol denote the contribution to the
total free energy from the magnetic-dependent Mullins effect, pure
magnetic, magneto-viscoelastic and volume deformation, respectively.
To depict the magneto-mechanical coupling behaviour of the isotropic
s-MRE, the Helmholtz free energy is assumed to be a function of
𝐂 and 𝐇R (e.g., Bustamante (2010), Haldar et al. (2016) and Hal-
dar (2021)). Subsequently, the corresponding Clausius-Plank inequality
(Saxena et al., 2013; Haldar, 2021) is

−
.
𝛹 − 𝐁R ⋅

.
𝐇R + 1

2
𝐒 ∶

.
𝐂 ≥ 0, (9)

where ∶ denotes the double contraction between two second-order
tensors. Since the whole process is reversible for 𝛹Mullins, 𝛹magnetic and

vol, one obtains
.
𝛹

Mullins
−

.
𝛹

magnetic
−

.
𝛹

vol
− 𝐁eq

R ⋅
.
𝐇R + 1

2
𝐒eq ∶

.
𝐂 = 0, (10)

where 𝐁eq
R and 𝐒eq are the magnetic flux density and the second Piola–

Kirchhoff stress of the reversible process. By Eq. (10) with the chain
6

rule method, 𝐁eq
R and 𝐒eq can be expressed as

𝐁eq
R = 𝐁Mullins

R + 𝐁magnetic
R = − 𝜕𝛹Mullins

𝜕𝐇R
− 𝜕𝛹magnetic

𝜕𝐇R
(11)

and

𝐒eq = 𝐒Mullins + 𝐒magnetic + 𝐒vol = 2 𝜕𝛹
Mullins

𝜕𝐂
+ 2 𝜕𝛹

magnetic

𝜕𝐂
+ 2 𝜕𝛹

vol

𝜕𝐂
. (12)

Conversely, due to the irreversibility of the viscoelastic process, the
corresponding thermodynamic inequality for 𝛹mve is

−
.
𝛹

mve
− 𝐁mve

R ⋅
.
𝐇R + 1

2
𝐒mve ∶

.
𝐂 ≥ 0. (13)

oting that 𝛹mve is determined by 𝐂
e

and 𝐇R. Hence, the time deriva-
ive of 𝛹mve can be expressed as
. mve

= 𝜕𝛹mve

𝜕𝐂
e ∶

.

𝐂
e
+ 𝜕𝛹mve

𝜕𝐇R
∶

.
𝐇R. (14)

By Eq. (2), one has

𝐂
e
= 𝐅

v−T
𝐂𝐅

v−1
. (15)

Following,

.

𝐂
e
= −𝐅

v−T
.

𝐅
vT
𝐅
eT
𝐅
e
− 𝐅

eT
𝐅
e
.

𝐅
v
𝐅
v−1

+ 𝐅
v−T

.

𝐂𝐅
v−1

, (16)

where

.

𝐅
vT

is the time derivative of 𝐅
vT

. Inserting Eqs. (14) and (16)
into Eq. (13) and by

𝜕𝐂
𝜕𝐂

= 𝐽−2∕3
(

I − 1
3
𝐂⊗ 𝐂−1

)

= 𝐽−2∕3PT, (17)

here P is the transpose of the projection tensor to the reference
onfiguration. I is the fourth-order unit tensor and the symbol ⊗ is the
ensor product operator, one obtains

mve
R = − 𝜕𝛹mve

𝜕𝐇R
, (18)

mve = 2𝐽−2∕3P ∶ 𝐅
v−1 𝜕𝛹mve

𝜕𝐂
e 𝐅

v−T
(19)

and a dissipation inequality

𝐷dissipation = 𝐅
e 𝜕𝛹mve

e 𝐅
eT

∶
⎛

⎜

⎜

𝐅
e−T

𝐅
v−T

.

𝐅
vT
𝐅
eT

+ 𝐅
e
.

𝐅
v
𝐅
v−1

𝐅
e−1⎞

⎟

⎟

≥ 0. (20)

𝜕𝐂

⎝ ⎠
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The Kirchhoff viscoelastic stress 𝝉mve is defined as

𝝉mve = 2𝐅
e 𝜕𝛹mve

𝜕𝐂
e 𝐅

eT
. (21)

Since the Kirchhoff viscoelastic stress 𝝉mve is symmetric tensor1 and

𝐅
e−T

𝐅
v−T

.

𝐅
vT
𝐅
eT

=
(

𝐅
e
.

𝐅
v
𝐅
v−1

𝐅
e−1

)T

, the dissipation equation Eq. (20)
can be expressed as

𝐷dissipation = 𝝉mve ∶ 1
2
𝐅
e
.

𝐅
v
𝐅
v−1

𝐅
eT
𝐅
e−T

𝐅
e−1

= 𝝉mve ∶ 1
2
𝐅
e
.

𝐅
v
𝐅
v−1

𝐅
eT
𝐛
e−1

= 𝝉mve𝐛
e−1

∶ 1
2
𝐅
e
.

𝐅
v
𝐅
v−1

𝐅
eT
. (22)

𝐅
e
.

𝐅
v
𝐅
v−1

𝐅
eT

can be decoupled into symmetric and skew-symmetric
arts as

𝐅
e
.

𝐅
v
𝐅
v−1

𝐅
eT

= −1
2
𝐅

.

𝐂
v−1

𝐅
T
+ skw

(

𝐅
e
.

𝐅
v
𝐅
v−1

𝐅
eT
)

, (23)

where skw(∙) represents the skew-symmetric part of the tensor (∙), and.

𝐂
v−1

is the time derivative of 𝐂
v−1

. Due to the symmetry property of

𝝉mve𝐛
e−1

, the skew-symmetric part of the tensor 𝐅
e
.

𝐅
v
𝐅
v−1

𝐅
eT

does not
play a role in Eq. (22). Therefore, by Eqs. (21) to (23), the dissipation
inequality in Eq. (20) is simplified to

−𝝉mve𝐛
e−1

∶ 1
2
𝐅

.

𝐂
v−1

𝐅
T
≥ 0. (24)

ince 𝐅

.

𝐂
v−1

𝐅
T
𝐛
e−1

is a deviatoric tensor, there is no contribution of the
pherical part of 𝝉mve to the establishment of Eq. (24). Therefore, an
lternative expression for Eq. (24) is

dev
(

𝝉mve) ∶ 1
2
𝐅

.

𝐂
v−1

𝐅
T
𝐛
e−1

≥ 0. (25)

To guarantee the thermodynamic inequality in Eq. (25), similar to the
approach applied by Kaliske (2009), the evolution law is set to

−1
2
𝐅

.

𝐂
v−1

𝐅
T
𝐛
e−1

= �̇�
dev (𝝉mve)

‖dev (𝝉mve)‖
, (26)

where symbols dev(∙) and ‖∙‖ denote the deviatoric and the Hilbert–
Schmidt operators norm of the second-order tensor (∙), respectively. �̇�
enotes the effective creep rate. In order to satisfy the inequality in
q. (20), �̇� is set to be a positive value.

. Specific constitutive equations and model prediction

The specific constitutive equations corresponding to 𝛹Mullins,
magnetic, 𝛹mve and 𝛹 vol are introduced in this section. After identifying

he material parameters, the model simulation results are compared
ith the tested results. Furthermore, model verification and model
rediction are conducted.

According to the representation theory of tensors and previous mod-
lling studies of the isotropic s-MRE (e.g., Haldar (2021) and Lucarini
t al. (2022b)), the tensor invariants

𝐼1 = tr
(

𝐂
)

, 𝐼
e
1 = tr

(

𝐂
e)

, 𝐼3 = det (𝐂) , (27)

4 = 𝐈 ∶ 𝐇R ⊗𝐇R, 𝐼5 = 𝐈 ∶ 𝐇⊗𝐇 = 𝐂−1 ∶ 𝐇R ⊗𝐇R (28)

1 If 𝛹 is isotropic scalar function, the Kirchhoff viscoelastic stress 𝝉 =
𝐅 (𝜕𝛹∕𝜕𝐂)𝐅T can be written as 𝝉 = 𝛼1𝐈 + 𝛼2𝐛 − 𝛼3𝐛2 (Dorfmann and Ogden,
7

2014), where 𝛼𝑖, (𝑖 = 1, 2, 3) is a scalar function determined by 𝐼1, 𝐼2 and 𝐼3.
are used to depict the magnetic-dependent mechanical behaviour of the
isotropic s-MRE. The symbols det(∙) and tr(∙) represent the determinant
and trace operator.

4.1. Constitutive equations of the magnetic-dependent Mullins effect and
residual strain

According to the work by Lucarini et al. (2022b), without loss of
generality, the pure magnetic free energy 𝛹magnetic can be expressed as

𝛹magnetic (𝐼5, 𝐽
)

= −𝑚0𝑚1 ln

[

cosh

(
√

𝐼5
𝑚1

)]

−
𝜇0
2
𝐽𝐼5, (29)

where the first term is used to describe the magnetization behaviour,
and the second term represents the contribution of the Maxwell stress
to the total stress. The two material parameters 𝑚0 and 𝑚1 are used to
depict the magnetization behaviour of the material. Inserting Eq. (29)
into Eqs. (11) and (12) with Eqs. (3), (4) and 𝝈 = 𝐽−1𝐅𝐒𝐅T, one obtains

𝐁magnetic =

[

𝐽−1𝑚0 tanh

(
√

𝐼5
𝑚1

)

1
√

𝐼5
+ 𝜇0

]

𝐇 (30)

nd

magnetic = 𝐽−1

[

𝑚0 tanh

(
√

𝐼5
𝑚1

)

1
√

𝐼5
+ 𝜇0𝐽

]

𝐇⊗𝐇 −
𝜇0
2
𝐼5𝐈. (31)

The volumetric free energy 𝛹 vol is expressed as

𝛹 vol (𝐽 ) = 0.5𝐾 (𝐽 − 1)2 , (32)

here 𝐾 is the bulk modulus of the material. The corresponding Cauchy
tress 𝝈vol is
vol = 𝐾 (𝐽 − 1) 𝐈. (33)

Regarding the free energy to depict the Mullins effect and the resid-
ual strain, the previously proposed pseudo-elastic model by Dorfmann
and Ogden (2004) is

𝛹Mullins = 𝜂1𝛹
e +

(

1 − 𝜂2
)

𝛹 residual + 𝜑1
(

𝜂1
)

+ 𝜑2
(

𝜂2
)

, (34)

where 𝛹 e is the elastic free energy function and 𝛹 residual is introduced
to describe the residual strain. 𝜂1 and 𝜂2 are internal variables used to
describe the Mullins effect and residual strain, respectively.

In order to reveal the coupling relationship between the Mullins
effect and the magnetic-dependence, the softening stress (the stress
obtained from the virgin sample minus the stress after removal the
Mullins effect) values under different magnetic fields are determined
through the dynamic test data in Fig. 7. As shown in Fig. 9, a larger
softening stress is encountered if a higher magnetic field is applied.
To describe this trend, a magnetic-dependence mechanism should be
included in the free energy function due to the Mullins effect. To depict
the magnetic-dependence of the mechanical behaviour for the isotropic
s-MRE, a modified pseudo-elastic model is proposed in the form of

𝛹Mullins = 𝜂1𝛹
me +

(

1 − 𝜂2
)

𝛹 residual + 𝜑1
(

𝜂1
)

+ 𝜑2
(

𝜂2
)

, (35)

where 𝛹me is the free energy function to depict the magnetic-elastic
behaviour. Specifically, as suggested by Saxena et al. (2013) and Hal-
dar (2021), 𝛹me is obtained by multiplying 𝛹 e with the magnetic-
ependent term. Furthermore, a Yeoh model (Yeoh, 1993) is used to
epict the hyperelastic behaviour of the isotropic s-MRE. Therefore, the
pecific form of 𝛹me is

𝛹me =

[

1 + ge tanh

(
√

𝐼4
𝑀e

)]

𝛹 e with

𝛹 e = 𝜇e

[

(

𝐼1 − 3
)

+ 𝑑2
(

𝐼1 − 3
)2

+ 𝑑3
(

𝐼1 − 3
)3

]

, (36)
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Fig. 9. Curves of the softening stress under different magnetic fields (0, 0.26 and 0.49 T).
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here 𝜇e is the tensile modulus at zero magnetic field strength. Two
aterial parameters 𝑑2 and 𝑑3 represent the contribution of the second-

nd third-order terms for
(

𝐼1 − 3
)

to the hyperelastic energy. ge and
e are material parameters to reflect the magnetic-dependence of the

tress response.
According to Ogden and Roxburgh (1999), Dorfmann and Ogden

2004) and Fazekas and Goda (2021), the internal variable 𝜂1 has two
states (active or inactive), the state of 𝜂1 is mediated by the relationship
between the current strain and the historical maximum strain. Specif-
ically, when the maximum historical strain gradually increases with
loading, variable 𝜂1 is inactive and the value is set to be 1. On the
contrary, when the maximum historical strain does not change with
loading, the value of 𝜂1 is activated and updates as

𝜂1= 1 − 1
𝑞
erf

⎡

⎢

⎢

⎢

⎣

𝛹 e
max − 𝛹 e

(

𝐼1
)

𝑤

⎤

⎥

⎥

⎥

⎦

, (37)

where 0 < 𝜂1 ≤ 1 and erf [∙] is the Gauss error function. 𝑞 and 𝑤 are
ositive parameters. 𝛹 e

max is the maximum value of 𝛹 e at the current
oading history. Following the path by (Dorfmann and Ogden, 2004),

𝜕𝛹Mullins

𝜕𝜂1
= 0. (38)

nserting Eqs. (35) and (36) into Eq. (38) and by Eq. (37), one obtains

𝜕𝜑1
(

𝜂1
)

𝜕𝜂1
= −𝛹me

= −

[

1 + ge tanh

(
√

𝐼4
𝑀e

)]

{

𝛹 e
max −𝑤 ⋅ erf−1

[

𝑞
(

1 − 𝜂1
)]

}

,

(39)

he specific form of 𝜑1(𝜂1) can be obtained by solving the nonlinear
quation in Eq. (39).2

To describe the residual strain, a negative value of the stress at zero
eformation is required (Dorfmann and Ogden, 2004). the correspond-
ng free energy function 𝛹 residual is

residual = 𝜇e

[

𝐼
modi
1 + 𝑑2

(

𝐼
modi
1

)2
+ 𝑑3

(

𝐼
modi
1

)3]

,

𝐼
modi
1 = 𝜈1

(

�̃�21 − 1
)

+ 𝜈2
(

�̃�22 − 1
)

+ 𝜈3
(

�̃�23 − 1
)

,
(40)

where 𝐼
modi
1 is a modified form of

(

𝐼1 − 3
)

and 𝜆𝑖
2, (𝑖 = 1, 2, 3) is the

igenvalue of 𝐂. The material parameter 𝜈𝑖 is expressed as

𝜈𝑖 = 𝜅1 + 𝜅2 tanh
(𝜆𝑖,max − 1

𝜅3

)

, (41)

here 𝜅𝑖 is a non-dimensional model parameter and 𝜆𝑖,max is the max-
mum value of the principal strain 𝜆𝑖 acting in the 𝑖th direction.

2 Eqs. (39) and (44) are needed only for demonstration purposes. Since
1
(

𝜂1
)

and 𝜑2
(

𝜂2
)

do not participate in the subsequent numerical realization
8

calculations, their specific forms are not shown.
Subsequently, similar to 𝜂1, the internal variable 𝜂2 is a fixed value of
1 in the inactive state and updates in the active state according to

𝜂2 =

tanh

⎡

⎢

⎢

⎢

⎣

(

𝛹 e
(

𝐼1
)

𝛹 e
max

)

𝛼𝛹e
max
𝜇e

⎤

⎥

⎥

⎥

⎦

tanh (1)
, (42)

here 0 < 𝜂2 ≤ 1 and 𝛼 is a non-dimensional parameter. In addition,
he condition that 𝜂2 satisfies is

𝜕𝛹Mullins

𝜕𝜂2
= 0. (43)

Inserting Eq. (35) into Eq. (43), results

𝜕𝜑2
(

𝜂2
)

𝜕𝜂2
= 𝛹 residual. (44)

Similar to Eq. (39), analytically, the specific form of 𝜑2(𝜂2) can be
obtained by solving Eq. (44). Inserting Eqs. (35), (36) and (40) into
Eqs. (11) and (12) with Eqs. (3), (4) and 𝝈 = 𝐽−1𝐅𝐒𝐅T, the corre-
sponding magnetic flux density 𝐁Mullins and Cauchy stress 𝝈Mullins are

𝐁Mullins =
𝐽−1𝜂1𝜇ege𝐛𝐇

√

𝐼4𝑀e

[

tanh2
(
√

𝐼4
𝑀e

)

− 1

]

×
[

(

𝐼1 − 3
)

+ 𝑑2
(

𝐼1 − 3
)2 + 𝑑3

(

𝐼1 − 3
)3
]

(45)

and

𝝈Mullins = 2𝐽−1𝜂1

[

1 + ge tanh

(
√

𝐼4
𝑀e

)]

𝜕𝛹 e

𝜕𝐼1
dev(𝐛)

+ 2𝐽−1 (1 − 𝜂2
) 𝜕𝛹 residual

𝜕𝐼
modi
1

dev
(

�̃�
)

(46)

with
𝜕𝛹 e

𝜕𝐼1
= 𝜇e

[

1 + 2𝑑2
(

𝐼1 − 3
)

+ 3𝑑3
(

𝐼1 − 3
)2

]

, (47)

𝜕𝛹 residual

𝜕𝐼
modi
1

= 𝜇e

[

1 + 2𝑑2𝐼
modi
1 + 3𝑑3

(

𝐼
modi
1

)2]

(48)

and

𝐛 =
⎡

⎢

⎢

⎣

𝜈1�̃�21 0 0
0 𝜈2�̃�22 0
0 0 𝜈3�̃�23

⎤

⎥

⎥

⎦

. (49)

4.2. Constitutive equations to depict the magnetic-dependent nonlinear vis-
coelastic behaviour

To reflect the magnetic-dependence of the viscoelastic free energy,
the viscoelastic stress (the total stress response of the dynamic test in
Fig. 7 minus the hyperelastic stress response of the quasi-static test in
Fig. 5) values under different magnetic fields are determined through
experimental test data. As shown in Fig. 10, a larger viscoelastic
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Fig. 10. Curves of the viscoelastic stress under different magnetic fields (0, 0.26 and 0.49 T).
esponse is obtained if a higher magnetic field is applied. Therefore,
magnetic-dependence is directly introduced into the viscoelastic free

nergy term to depict this observed experimental phenomenon. Similar
o the form of the magnetic-dependent hyperelastic free energy in
q. (36), the magnetic-dependent viscoelastic free energy 𝛹mve is

𝛹mve =

[

1 + gve tanh

(
√

𝐼4
𝑀ve

)]

𝛹 ve,

𝛹 ve = 𝜇ve

[

(

𝐼
e
1 − 3

)

+ 𝑑2
(

𝐼
e
1 − 3

)2
+ 𝑑3

(

𝐼
e
1 − 3

)3
]

.

(50)

nserting Eq. (50) into Eqs. (18) and (19) with Eqs. (3), (4) and 𝝈 =
𝐽−1𝐅𝐒𝐅T, the corresponding magnetic flux density 𝐁mve and Cauchy
stress 𝝈mve are

mve =
𝐽−1𝜇vegve𝐛𝐇

√

𝐼4𝑀ve

[

tanh2
(
√

𝐼4
𝑀ve

)

− 1

]

×
[

(

𝐼e
1 − 3

)

+ 𝑑2
(

𝐼e
1 − 3

)2 + 𝑑3
(

𝐼e
1 − 3

)3
]

(51)

nd

mve = 2𝐽−1𝜇ve

[

1 + gve tanh

(
√

𝐼4
𝑀ve

)]

[

1 + 2𝑑2
(

𝐼
e
1 − 3

)

+ 3𝑑3
(

𝐼
e
1 − 3

)2
]

dev
(

𝐛
e)

. (52)

nserting Eq. (50) into Eq. (21), an alternative expression for Eq. (26)
s

1
2
𝐅

.

𝐂
v−1

𝐅
T
𝐛
e−1

= �̇�
dev

(

𝐛
e)

‖

‖

‖

‖

dev
(

𝐛
e)‖

‖

‖

‖

. (53)

n order to depict the nonlinear viscoelastic behaviour of the isotropic
-MRE, a strain process-dependence (e.g., Bergström and Boyce (1998),
aliske (2009) and Wang et al. (2023)) is introduced for the effective
reep rate �̇�. The form of �̇� is assumed to be

�̇� = �̇�0
⎡

⎢

⎢

⎣

√

𝐼
v
1
3

− 1
⎤

⎥

⎥

⎦

𝑐
⎛

⎜

⎜

⎜

⎝

‖

‖

‖

‖

dev
(

𝐛
e)‖

‖

‖

‖

√

2

⎞

⎟

⎟

⎟

⎠

𝑚

, (54)

here �̇�0 > 0 is the reference effective creep rate and 𝐼1 = tr
(

𝐂
v)

.
Power term 𝑐 ∈ [−1, 0] determines the kinetics of relaxation, and 𝑚 ∈
[1,+∞] determines the strain-activated inelastic process. In Eq. (54),
the effect creep rate �̇� decreases with increasing viscous strain and
increases with increasing elastic strain. The viscoelastic constitutive
equation in Eq. (53) is highly nonlinear. In order to solve it, the
operator splitting method (e.g., Simo and Hughes (2006), Nguyen
et al. (2007) and Reese and Govindjee (1998)) is applied. The detailed
numerical integration algorithm corresponding to the operator splitting
9

method is presented in Appendix.
In summary, the constitutive equations to depict the nonlinear
magneto-mechanical behaviour of the isotropic s-MRE are

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝝈 = 𝝈Mullins + 𝝈mve + 𝝈vol + 𝝈magnetic

𝝈vol = 𝐾 (𝐽 − 1) 𝐈

𝝈magnetic = 𝐽−1
[

𝑚0 tanh
(

√

𝐼5
𝑚1

)

1
√

𝐼5
+ 𝜇0𝐽

]

𝐇⊗𝐇 − 0.5𝜇0𝐼5𝐈

𝝈Mullins = 2𝐽−1𝜂1

[

1 + ge tanh
(

√

𝐼4
𝑀e

)]

𝜕𝛹 e

𝜕𝐼1
dev

(

𝐛
)

+2𝐽−1 (1 − 𝜂2
) 𝜕𝛹 residual

𝜕𝐼
modi
1

dev
(

�̃�
)

𝜕𝛹 e

𝜕𝐼1
= 𝜇e

[

1 + 2𝑑2
(

𝐼1 − 3
)

+ 3𝑑3
(

𝐼1 − 3
)2

]

𝜕𝛹 residual

𝜕𝐼
modi
1

= 𝜇e

[

1 + 2𝑑2𝐼
modi
1 + 3𝑑3

(

𝐼
modi
1

)2]

𝜂1= 1 − 1
𝑞 erf

[

𝛹 e
max−𝛹

e
(

𝐼1
)

𝑤
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. (55)

4.3. Boundary value problem solutions and parameter identification

For obtaining the solution to the boundary value problem, it is
assumed 𝐽 = 1. As shown in Fig. 3, the uniaxial tension is along the
𝑦-direction. Therefore, the corresponding deformation gradient is

𝐅 =
⎡

⎢

⎢

⎣

𝜆−0.5 0 0
0 𝜆 0
0 0 𝜆−0.5

⎤

⎥

⎥

⎦

, (56)

where 𝜆 > 1 is the stretch along the 𝑦-direction. In order to conduct the
parameter identification, besides 𝐅, the magnetic field strength within

MRE should be determined as well. A detailed introduction of the
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Fig. 11. Flowchart for solving the magnetic boundary value problem.
t
d
t
o
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method to determine the magnetic field strength within MRE through
the tested magnetic field strength in the air can be found in Dorfmann
and Ogden (2014) and Bustamante (2010). To ease the understanding
of readers, a flow chart corresponding to this method is shown in
Fig. 11 and the corresponding explanation is as follows.

As shown in Fig. 3, the applied magnetic field in the air is along the
𝑥-direction and can be expressed as

𝐇air =
[

𝐻air 0 0
]T , (57)

where 𝐻air is the magnetic field strength in the external environment.
By Eq. (7), the magnetic flux density 𝐁air is

𝐁air = 𝜇0𝐇air =
[

𝜇0𝐻
air 0 0

]T . (58)

The direction 𝐧 of the magnetic flux density at the interface between
the isotropic s-MRE and the air is

𝐧 = [1 0 0]T. (59)

By the boundary conditions in Eqs. (5) and (6), the magnetic field
strength 𝐇MRE and magnetic flux density 𝐁MRE within the isotropic
s-MRE are

𝐇MRE = [𝐻1 0 0]T (60)

and

𝐁MRE = [𝜇0𝐻air 𝐵1 𝐵2]T. (61)

where 𝐻1, 𝐵1 and 𝐵2 are the variables to solve for. According to
Eqs. (4), (56) and (60), 𝐼4 and 𝐼5 can be simplified as

𝐼4 = 𝜆−1𝐻2
1 (62)

and

𝐼5 = 𝐻2
1 . (63)

Subsequently, the magnetic flux density of the isotropic s-MRE deter-
mined by the constitutive equation is

𝐁MRE = 𝐁magnetic + 𝐁Mullins +
∑

𝐁mve
𝛽 , (64)
10

𝛽 𝜇
where 𝛽 is the number of viscoelastic elements set. The specific form
for 𝐁MRE is shown in Fig. 11. Substituting Eqs. (60) to (63) and the
incompressibility condition 𝐽 = 1 into Eq. (64), results

𝐵1 = 𝐵2 = 0 (65)

and

𝜇0𝐻
air = 𝑚0 tanh

(

𝐻1
𝑚1

)

+ 𝜇0𝐻1

+
𝜂1𝜇ege𝐻1
√

𝜆𝑀e ||𝐻1
|

|

[

tanh2
(

𝐻1
√

𝜆𝑀e

)

− 1

]

×
[

(

𝐼1 − 3
)
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(

𝐼1 − 3
)2 + 𝑑3

(

𝐼1 − 3
)3
]

+
∑

𝛽

𝜇𝛽
veg𝛽ve𝐻1
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𝜆𝑀𝛽
ve ||𝐻1

|

|

[

tanh2
(

𝐻1
√

𝜆𝑀𝛽
ve

)

− 1

]

×
[

(

𝐼e
1𝛽 − 3

)

+ 𝑑2𝛽
(

𝐼e
1𝛽 − 3

)2
+ 𝑑3𝛽

(

𝐼e
1𝛽 − 3

)3
]

.

(66)

With known 𝐻air , 𝐻1 can be obtained by solving Eq. (66)3 through
Newton–Raphson method.

After obtaining the magnetic field strength of the material, the
Cauchy stress is calculated, and its expression is

𝝈 = 𝝈Mullins + 𝝈mve − 𝑝𝐈, (67)

3 In the subsequent parameter identification, it is found that the contribu-
ion of the applied magnetic field is mainly reflected in the magnetic flux
ensity 𝐁magnetic of the purely magnetic part. After calculation, it is found
hat the contribution to the magnetic flux density by 𝐁magnetic is at least two
rders higher than 𝐁Mullins and 𝐁mve for the given strain range (less than 18%).
herefore, 𝐻1 can be solved approximately by 𝜇0𝐻air ≈ 𝑚0 tanh

(

𝐻1∕𝑚1
)

+

0𝐻1.
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where 𝑝 can be identified as a hydrostatic pressure. Due to the traction-
ree boundary condition 𝜎11 = 𝜎33 = 0, one obtains

𝑝 = 𝜎Mullins
11 + 𝜎mve

11 = 𝜎Mullins
33 + 𝜎mve

33 . (68)

Inserting Eq. (68) into Eq. (67), results

𝜎22 = 𝜎mve
22 − 𝜎mve

11 + 𝜎Mullins
22 − 𝜎Mullins

11 . (69)

By inserting Eqs. (56) and (60) into Eq. (55) and 𝐽 = 1, the specific
form of each item in 𝜎22 is

𝜎mve
22 − 𝜎mve

11 = 2𝜇ve

[

1 + gve tanh
(

𝐻1
𝑀ve

)]

×
[

1 + 2𝑑2
(

𝜆e
2
+ 2 1

𝜆e
− 3

)

+3𝑑3
(

𝜆e
2
+ 2 1

𝜆e
− 3

)2] (
𝜆e

2
− 1

𝜆e
)

(70)

and

𝜎Mullins
22 − 𝜎Mullins

11 = 2𝜂1

[

1 + 𝑔e tanh
(

𝐻1
𝑀e

)]

𝜕𝛹 e

𝜕𝐼1

(

𝜆2 − 1
𝜆

)

+ 2(1 − 𝜂2)
𝜕𝛹 residual

𝜕𝐼
modi
1

(

𝜈2𝜆
2 − 𝜈1

1
𝜆

)
(71)

with
𝜕𝛹 e

𝜕𝐼1
= 𝜇e

[

1 + 2𝑑2
(

𝜆2 + 2 1
𝜆
− 3

)

+ 3𝑑3
(

𝜆2 + 2 1
𝜆
− 3

)2]

,

𝜕𝛹 residual

𝜕𝐼
modi
1

= 𝜇e
[

1 + 2𝑑2
(

𝜈1𝜆
2 − 𝜈1 + 2𝜈2

1
𝜆
− 2𝜈2

)

+3𝑑3
(

𝜈1𝜆
2 − 𝜈1 + 2𝜈2

1
𝜆
− 2𝜈2

)2]

,

(72)

where the parameter 𝜈1 satisfies 𝜈1 = 𝜅1 under the uniaxial tensile test
ondition (Dorfmann and Ogden, 2004).

The nonlinear least square fitting method by the function lsqnon-
in in MATLAB® (MATLAB Release 2020b, The MathWorks, Inc.,
atick, Massachusetts, United States) is applied to obtain the ma-

erial parameters which describe the magneto-mechanical coupling
ehaviour of the isotropic s-MRE. The detailed parameter identifica-
ion is as follows. Firstly, the values of parameters 𝑚0 and 𝑚1 are
btained from the magnetic test result as shown in Fig. 2 with Eq. (30).
fter identifying 𝑚0 and 𝑚1, the magnetic field strength 𝐻1 within

he isotropic s-MRE are obtained by solving Eq. (66). Regarding the
arameters describing the magnetic-dependent Mullins effect and the
esidual strain of the isotropic s-MRE, the magnetic independent ma-
erial parameters 𝜇e, 𝑑2, 𝑑3, 𝑞, 𝑤, 𝛼 and 𝜅𝑖 (𝑖 = 1, 2, 3) are identified
y the results in Fig. 5 under 0 T with Eqs. (71) and (72). Afterwards,
he magnetic-dependent parameters 𝑔e and 𝑀e are identified by the
esults in Fig. 5 under 0.26 and 0.49 T magnetic fields. In this work, the
aximum magnetic field during the quasi-static test is 0.49 T, which is

maller than the saturation magnetization intensity for the isotropic s-
RE. Hence, the parameter 𝑀e is set to 𝜇0𝑀e = 1T. The comparison

etween the simulation and experimental results is shown in Fig. 5.
learly, the proposed magnetic-dependent pseudo-elastic model can
ccurately depict the magnetic-dependent Mullins effect and residual
train of the isotropic s-MRE with accuracy.

Regarding the identification of the viscoelastic parameters, two sets
f process-dependent viscoelastic elements with constitutive equations
n Eq. (70) are utilized to depict the magnetic-dependent viscoelastic
ehaviour of the isotropic s-MRE. Firstly, the magnetic-independent
aterial parameters 𝜇ve, �̇�0, 𝑐 and 𝑚 are identified by the stress re-

axation result under 0 T as shown in Fig. 6. After obtaining the
alues of the magnetic independent material parameters, the magnetic-
ependent parameter 𝑔ve and 𝑀ve are identified by the results under
.26 and 0.49 T in Fig. 6. Similar to the above mentioned setup, 𝑀ve is
et to 𝜇0𝑀ve = 1T. The comparison between the simulation and exper-
11

mental results is shown in Fig. 6. Apparently, the magnetic-dependent
iscoelastic behaviour of the isotropic s-MRE is well depicted by the
eveloped model.

As a comparison study, four sets of classical Maxwell viscoelastic
lements4 are utilized to depict the magnetic-dependent viscoelastic be-
aviour of the isotropic s-MRE and the comparison between simulation
nd experimental results is shown in Fig. 12. The R-squared and mean
bsolute percentage error (MAPE) of the two models are calculated
ith the experimental results and simulation results of stress relaxation.
he R-squared and MAPE values of the process-dependent viscoelastic
odel are 0.997 and 1.10%, respectively, and the corresponding quan-

ities of the classical Maxwell viscoelastic model are 0.969 and 3.17%,
espectively. Comparing the values of R-squared and MAPE, it can be
ound that even though two more material parameters in the classical
axwell viscoelastic model are applied, the fitting result is not as good

s the process-dependent viscoelastic model. The specific values of the
aterial parameters obtained by identification and the determination

oefficient with R-squared and MAPE between simulation and test
esult are shown in Table 1.

.4. Model verification and prediction

In practice, the Mullins effect, residual strain and the nonlinear
iscoelastic behaviour of the material occur in a simultaneous manner.
o validate the prediction ability of the proposed model, a triangular
train loading with increasing strain amplitudes (9, 12.6 and 16.2%)
t a relatively fast loading rate (4.5 × 10−2 s−1) is conducted for the

test sample. The identified material parameters in Table 1 are used to
predict the stress response. The comparison between simulation and ex-
perimental results is shown in Fig. 7, and the corresponding R-squared
value is calculated, which is 0.985. By analysing the data results and
R-squared, the simulation results fit well with the experimental results.

Moreover, in order to verify the predictive ability of the proposed
model for viscoelasticity, sinusoidal tests with different loading fre-
quencies (1, 0.1 and 0.01 Hz), loading amplitudes (9.0, 12.6 and 16.2%)
and magnetic field (0, 0.26 and 0.49 T) are carried out. To obtain stable
stress–strain results, the test cycles are set to 5 cycles for 0.01 Hz, 30
cycles for 0.1 Hz and 100 cycles for 1 Hz according to the loading fre-
quency. Subsequently, the corresponding stress responses are calculated
with the proposed model and the parameter values in Table 1. The
experimental results and predicted results are shown in Fig. 13, and
the corresponding R-squared value is calculated, which is 0.989. The
value of R-squared illustrates that the proposed model has a good fitting
effect.

Furthermore, a predicted case is used to illustrate the contribution
of loading history and magnetic field to the stress response. For this
case, two cycles of triangular are considered. Specifically, three levels
of strain amplitude which are 4, 8 and 16%, are applied for the first
cycle of the strain loading and the strain amplitude of the second
cycle is fixed to 8%. The stress response of the second cycle is used to
illustrate the effect of loading history on the stress-softening behaviour
of the material. During the simulation, the effects of different magnetic
fields (0 and 1 T) are considered. The results for this simulation case are
shown in Fig. 14. It is found that a larger value of maximum history
strain leads to a more pronounced stress softening and residual strain.

5. Conclusion and outlook

In this work, the magnetic-dependent inelastic mechanical
behaviours of the isotropic s-MRE are tested through a DMA with
magnetic field excitation and DIC strain measurement components.

4 By setting 𝑐 = 0 and 𝑚 = 1 in Eq. (54), the process-dependent viscoelastic
model is degraded into the classical Maxwell viscoelastic model as proposed
by Reese and Govindjee (1998).
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Table 1
Specific values of material parameters involved in inelastic behaviours of the isotropic s-MRE with R-squared and mean absolute percentage
error (MAPE).

Model utilized Identified parameters R-squared/MAPE

Magnetization model 𝑚0 = 4.494 × 10−1 T, 𝑚1 = 2.615 × 102 kA∕m 0.999/7.17%

Magnetic-dependent
pseudo-elastic model

𝜇e = 3.287 × 105 Pa, 𝑑2 = −2.590, 𝑑3 = 6.442
𝑔e = 5.282 × 10−1, 𝑞 = 1.731 × 10, 𝑤 = 3.480 × 103 Pa
𝛼 = 3.605 × 10−1, 𝜅1 = 2.311, 𝜅2 = 3.138
𝜅3 = 1.200 × 10−3

0.986/14.82%

Process-dependent
viscoelastic model

𝜇v1 = 7.086 × 104 Pa, �̇�01 = 4.604 × 10−1 s−1

𝑐01 = −7.986 × 10−10, 𝑚01 = 2.296, 𝑔v1 = 1.270 × 10−1

𝜇v2 = 2.062 × 105 Pa, �̇�02 = 1.780 × 104 s−1

𝑐02 = −1.337 × 10−1, 𝑚02 = 3.453, 𝑔v2 = 5.332 × 10−1

0.997/1.10%

Classical Maxwell
viscoelastic model

𝜇v1 = 2.125 × 104 Pa, �̇�01 = 1.559 × 10−2 s−1, 𝑔v1 = 2.838 × 10−1

𝜇v2 = 1.277 × 105 Pa, �̇�02 = 2.328 s−1, 𝑔v2 = 2.896
𝜇v3 = 4.290 × 104 Pa, �̇�03 = 1.482 × 10−1 s−1, 𝑔v3 = 2.269 × 10−1

𝜇v4 = 1.847 × 104 Pa, �̇�04 = 9.284 × 10−4 s−1, 𝑔v4 = 1.834

0.969/3.17%
Fig. 12. Comparison of the experimental (Exp) and simulation results of stress relaxation results under different magnetic fields (0, 0.26 and 0.49 T) and strain amplitudes (9.0,
12.6 and 16.2%) by the Process-dependent viscoelastic model and the classical Maxwell model, where experimental scatter is shown in the light-coloured regions.
Subsequently, a new constitutive model incorporating the magnetic-
dependent Mullins effect, residual strain and nonlinear viscoelastic
behaviour of the isotropic s-MRE is proposed. After parameter iden-
tification, it is found that the model fitting result captures the observed
magnetic-dependent Mullins effect, residual strain and nonlinear vis-
coelastic behaviour of the isotropic s-MRE with accuracy. Moreover, to
verify that the model can predict the Mullins effect, residual strain and
nonlinear viscoelastic in a coupled manner, three cycles of triangular
strain with a consecutively increasing strain amplitude under a fast
loading rate are conducted for the sample. The comparison between
the model prediction and test result is shown to be quite reasonable. In
addition, to verify the predictive ability of the model for viscoelastic
behaviour at different frequencies, tests and model validation with
sinusoidal wave loading are carried out. Validation results show that
the proposed model provides reasonable results. To summarize, with
the developed model, the magnetic-dependent inelastic behaviours of
the isotropic s-MRE can be predicted with accuracy, which is of great
benefit for the design of MRE-based smart devices or structures.

Based on the model developed in this work, much research can be
pursued in the future. For example, the current model can be imple-
mented into commercial finite element software, such as in ABAQUS®
(ABAQUS Version 6.14, Dassault Systémes SIMULIA Corp, United
States), to evaluate the magnetic-dependent inelastic performance of
the MRE-based devices. Furthermore, since a larger magnetic-
dependence of the stress response is exhibited for the anisotropic s-
MRE, extending the current model to an anisotropic case is also one of
the possible future research directions.
12
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Appendix. Numerical implementation algorithm for the nonlinear
viscoelastic model

The constitutive equations for the nonlinear viscoelastic model are
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t

Fig. 13. Experimental (Exp) and simulation (Sim) results of sinusoidal loading with varying magnetic fields and strain amplitudes at different loading frequencies: (a) 0.01 Hz, (b)
0.1 Hz and (c) 1 Hz, where experimental scatter is shown in the light-coloured regions of the stress-time curves.
t

c

To solve Eq. (A.1), the operator splitting method (e.g., Reese and
Govindjee (1998) and Kaliske (2009)) is applied. Normally, the im-
plementation process consists of two stages: elastic trial and inelastic
correction. The specific solution is illustrated by taking a typical time
interval (𝑡n, 𝑡n+1) as an example. The values of the variables at 𝑡n are
known. Firstly, during the elastic trial step, the value of 𝐂

v−1
is frozen,

herefore,

𝐂
v−1

= 𝐂
v−1

, 𝐛
e
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𝐅
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, (A.2)
13

int 𝑡n int 𝑡n+1 𝑡n 𝑡n+1
where (∙)𝑡n and (∙)𝑡n+1 represent the variables at the previous and current

time step, respectively. (∙)int denotes the variable obtained through

he calculation of the elastic trial process. Afterwards, in the inelastic

orrection step, there is no change in the deformation gradient. Hence,.
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Fig. 14. Prediction results of cyclic loading with varying strain amplitudes at different magnetic fields: (a) 0 T, (b) 1 T.
A

Inserting Eq. (A.1) into Eq. (A.3), one obtains
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The equation in Eq. (A.4) can be solved by the exponential mapping
method (e.g., Kaliske (2009)). Specifically,
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Approximating Eq. (A.5), one obtains
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where 𝛥𝑡 = 𝑡n+1 − 𝑡n. By Eq. (A.6), it is found that 𝐛
e
int commutes with

𝐛
e

and dev
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. By eigen decomposition, 𝐛
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can be expressed as
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where 𝜆e2𝑎 and 𝐧𝑎 are the corresponding eigenvalue and eigenvector of
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e
. By Eqs. (A.7), (A.6) can be rewritten as

𝜆e𝑎 ≈ exp

⎧

⎪

⎨

⎪

⎩

−�̇�

[

dev
(

𝐛
e)]

𝑎
‖

‖

‖

‖

dev
(

𝐛
e)‖

‖

‖

‖

𝛥𝑡

⎫

⎪

⎬

⎪

⎭

𝜆e,int𝑎 , (A.8)

where
[

dev
(

𝐛
e)]

𝑎
is the 𝑎th principal stretch of

[

dev
(

𝐛
e)]

in the form

[

dev
(

𝐛
e)]

= 𝜆e
2
− 1 tr

(

𝐛
e)

. (A.9)
14

𝑎 𝑎 3
Introducing 𝜀e𝑎 = ln 𝜆e𝑎 (e.g., Kaliske (2009)), and taking the logarithm

of Eq. (A.8) yields

𝜀e𝑎 ≈ −�̇�𝛥𝑡
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‖

‖

+ 𝜀e,int𝑎 . (A.10)

Newton–Raphson method is used to solve Eq. (A.10), and the specific

steps are as follows. First, the initial value of the iteration is set to
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. (A.11)

fterwards, the calculated residual 𝐫 is checked and if ‖𝐫‖ ≤ 𝚝𝚘𝚕,
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. (A.12)
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n+1 n+1 n+1 n+1
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Otherwise, an updating is performed for the elastic trial strain 𝜀e𝑎 until
𝐫‖ ≤ 𝚝𝚘𝚕 is satisfied. The corresponding algorithm is
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(A.13)

fter the iteration is completed, 𝐛
e
𝑡n+1 and 𝐂

v
𝑡n+1 is obtained by

⎧

⎪
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⎪

⎩

𝐛
e
𝑡n+1

= 𝐛
e
𝑘+1

𝐂
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= 𝐅
T
𝑡n+1

𝐛
e−1

𝑡n+1
𝐅𝑡n+1

. (A.14)

Finally, the numerical solution of viscoelastic stress 𝝈mve is obtained by
Eq. (68).
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