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a b s t r a c t

A Gaussian distribution model was developed to examine the field-induced performance of anisotropic

magnetorheological elastomers. The developed model was based on the assumption that the iron

particles in magnetorheological elastomers aggregate into a large number of parallel body-centered

tetragonal structure columns whose length obeys the Gaussian distribution. By using multi-pole

approximation with local field effect and taking into account the nonlinearity and saturation of particle

magnetization, the field-induced shear modulus was calculated as a function of distribution and

dimension of the particle structures, the external magnetic field and the dynamic shear strain.

Compared with other modes as well as the published experimental results, this model shows

a remarkable improvement in accurately predicting the behavior of the magnetorheological elastomers.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Magnetorheological (MR) materials are a class of smart
materials whose mechanical and magnetic properties can be
varied by application of an external magnetic field [1]. Typically,
they consist of micron sized magnetically permeable particles
dispersed in a non-magnetic medium. Upon application of
a magnetic field, these particles can form ordered structures that
result in field-induced performance.

So far, many methods have been proposed to examine the field-
induced behavior of MR materials. Bossis et al. [2] developed both
the microscopic and macroscopic structural models to calculate
yield stresses of MR fluids. Rosensweig [3] derived general
expressions of the yield stress of the MR substance by taking into
account unsymmetric elastic and magnetic stress states of a
continuum. Ginder and Davis [4] analyzed average magnetic
induction with the finite element analysis and computed the shear
stresses from the field using Maxwell’s stress tensor. Koon et al. [5]
carried out research on Giant effect of magnetostriction materials.
Guan et al. [6] presented results of the studies on magnetostrictive
effect of the MRE. These methods are all based on the condition
that the particles are dispersed in a fluid matrix. In this situation,
the particles are subjected to small resistance and can form ordered
column structures between two poles. However, the condition for
MR elastomers is different as particles are hard to move freely in
the elastomer matrix. Our microstructural observation also
demonstrated that the particles could not form well-ordered
column structures but can only form the discontinuous and finite

length structures [7]. Compared with electrorheological (ER) fluid
and MR fluid research, very limited reports can be found, in the
literature, to investigate the mechanism of MR elastomers. Jolly
et al. [8] extended a simple dipole model, based on the magnetic
interactions between two adjacent particles, to approximate MR
elastomer performances. Davis [9] calculated the saturated field-
induced shear modulus by considering the interactions in a single
particle chain. It is noted that their models were based on the
condition that particles within matrix can form well-ordered chain
structures, which were not in good agreement with practical
microstructural observations. For this reason, the present work
aims to develop a model, by taking into account the practical
microstructure, for accurately predicting the behavior of aniso-
tropic MR elastomers. In the proposed model, a number of
influencing factors, including the distribution and dimension of
the particle columns, the nonlinear effect of external field, and
shear strain, will be addressed.

2. The Gaussian distribution model approach

For ER and MR fluids, both theoretical [10] and experimental
[11] studies proved that the body-centered tetragonal (BCT)
structures were the mostly stable field-induced structures. Our
microstructural study [7] also observed similar structures in MR
elastomers. To this end, the proposed modeling approach is based
on the assumption that the iron particles that have an average
diameter of 2.5 mm in a matrix aggregate into a large number of
BCT structures, which have the same direction, the same width
but different length, as shown in Fig. 1(a), and this simplifies the
calculations by assuming the chains are all neat and straight. And
the BCT lattice can be regarded as a compound of chain of class A
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and B, as shown in Fig. 2. We also assume that column length l0

obeys the Gaussian distribution. Thus the numbers of particles l

(l¼ l0/2R+1Z1), along with each column, also obey the Gaussian
distribution where the mean and the variance are represented by
L and s2, respectively. Due to the symmetry of the Gaussian
distribution, the length l is assigned less than 2L, i.e., lr2L. Thus
the value of l is distributed on the range of [1, 2L]. When the width
of the column is b’, the number of particles in the width border is
denoted by b where b¼b0/

ffiffiffi
6
p

Rþ1.

When an external magnetic field H0 (in z-axis direction) is
applied and a shear strain g is imposed on the MR elastomers
(Fig. 1b), their magnetic susceptibility is changed that leads to a
magnetic field-induced shear stress t, which can be expressed
as [2]

t¼�1

2
m0

H0

1þweff

 !2
@weff

@g , ð1Þ

where weff is the effective magnetic susceptibility in the direction
of the applied field, which is defined as

weff ¼
J

m0H0
, ð2Þ

where J is the average particle polarization in the direction of the
applied field in the MR elastomers. So J can be expressed as

J¼

P2L
l ¼ 1ðplnlÞ

V
, ð3Þ

where pl and n, respectively, denote the total dipole moment in
the z-axis direction and number of the columns that have number
of l particles in the z-axis direction, and V is the volume of the
whole MR elastomers.

Since the length of the columns obeys the Gaussian distribu-
tion, by using a constant factor k, nl can be expressed as

nl ¼ k
1ffiffiffiffiffiffi
2p
p

s
e�ðl�LÞ2=2s2

: ð4Þ

The total number of particles in the z-axis direction in the whole
MR elastomers can be obtained by the sum of that in all the
columns:

N¼
X2L

l ¼ 1

ðlnlÞ: ð5Þ

It can be seen from Fig. 1(c) that the number of particles in the
cross-section of a column is b2þðb�1Þ2. So N can also be
calculated by

N¼
Vj

Vpðb2þðb�1Þ2Þ
, ð6Þ

where j is the volume percentage of the particles, and Vp is the
volume of each particle. From Eqs. (4)–(6), k can be obtained and
nl is given by

nl ¼
jVe�ðl�LÞ2=2s2

Vpðb2þðb�1Þ2Þ
P2L

l ¼ 1ðle
�ðl�LÞ2=2s2

Þ
: ð7Þ

Under the external magnetic field, a dipole moment is induced
on each sphere particle. And the dipole moment will produce an
additional magnetic field on the other dipole moments. So the
dipole moment is affected by both the external magnetic field and
other dipole moments. As the particles compose the BCT
structures periodically, and for the sake of simplicity each particle
in a column is assumed to have the same dipole moment.

pl in Eq. (3) can be expressed by the sum of all the dipole
moments in the columns, which have the number of l particles in
the z-axis direction:

pl ¼
X

pi,z

l

¼ nl
ipi,z, ð8Þ

where pi,z is the component in the z-axis direction of the dipole
moment, and nl

i, which is the number of particles in the columns
that have number of l particles in the z-axis direction, is equal to
b2lþðb�1Þ2ðl�1Þ. In the following, pi,z is calculated by using a
dipole approximation with local field effects.

Fig. 1. A BCT column is viewed in the direction parallel to the z-axis when the MR

elastomers (a) without external displacement, (b) under a shear strain g, (c) the

cross-section perpendicular to z-axis and (d) the dimension of each BCT cell [8].

The particles have radius R and are not shown to scale.

Fig. 2. The BCT lattice can be regarded as compound of chain of classes A and B.

The empty and shadowed circles are denoted as the particles in chain of classes

A and B, respectively.
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Hloc is the local field, which is the sum of the external field H0

and the field Hp from all other dipoles evaluated at the position of
the center of particle under consideration:

Hloc ¼H0þHp, ð9Þ

where

Hp ¼
X 1

4pm0r5
ð�r2pþ3ðprÞrÞ, ð10Þ

where r is the position vector relative to the origin and is summed
over all other particles in the column under consideration. By
setting the position of center particle in the column as the origin
(as shown in Fig. 1(a)–(c)), the component of Eq. (10) in the z-axis
is

Hp,z ¼
X 1

4pm0ðx
2þy2þz2Þ

5=2
ð�ðx2þy2þz2Þpzþ3zðpxxþpyyþpzzÞ:

ð11Þ

As the external field is in the direction of the z-axis, the dipole
moment’s components in x-axis and y-axis are ignored. Then
Eq. (11) is simplified as

Hp,z ¼
X 2z2�x2�y2

4pm0ðx
2þy2þz2Þ

5=2
pz: ð12Þ

Hp,z is induced by the dipole moments in two class chains, A and B.
Firstly, the effect of class A chains is discussed. The particle’s

coordinate (x, y, z) is determined by two parts, which are the
particle’s relative position to the origin (A1, A2, A3) and the shear
strain g. In Fig. 1(a) and (c), compared to the origin, the particle
represented by the broken circle is the second particle in the
x-axis direction, the second one in the y-axis negative direction,
and the first one in the z-axis direction. So its relative position to
the origin can be expressed as (2, �2, 1), which is not changed by
the shear strain. For class A chains, there is

x¼
ffiffiffi
6
p

A1Rþ2A3Rsing,

y¼
ffiffiffi
6
p

A2R,
z¼ 2A3Rcosg: ð13Þ

Substituting Eqs. (13) into (12), the range of the sum for integer
A1, A2, A3 is, respectively, [�(b�1)/2, (b�1)/2)], [�(b�1)/2,
(b�1)/2)], [�(l�1)/2, (l�1)/2)] when b and l are odd numbers
and[�(b/2�1), (b/2�1)], [�(b/2�1), (b/2�1)], [�(l/2�1),
(l/2�1)] when b and l are even numbers.

Similarly, for class B chains, there is

x¼

ffiffiffi
6
p

2
ð2B1�1ÞRþ2ðB3�1ÞRsing,

y¼

ffiffiffi
6
p

2
ð2B2�1ÞR,

z¼ 2ðB3�1ÞRcosg: ð14Þ

Substituting Eqs. (14) into (12), the range of the sum for
integer B1, B2, B3 is respectively [�(b�1)/2, 0) & (0, (b�1)/2)],
[�(b�1)/2, 0) & (0, (b�1)/2)], [�(l�1)/2, 0) & (0, (l�1)/2)] when
b and l are odd numbers and [�b/2, 0) & (0,b/2], [�b/2, 0) &
(0,b/2], [� l/2, 0) & (0,l/2]when b and l are even numbers.

It is difficult to obtain the analytical expression for the
relationship betweenHp,z and pz from Eqs. (12)–(14) directly.
Instead, we firstly set given values to b andg, and a series of values
to l, i.e. letting l be from 1 to 200. Then a series of values of
Sð2z2�x2�y2Þ=ð4pm0ðx

2þy2þz2Þ
5=2
Þ(denoted by Sgðx,y,zÞ later)

can be computed. By using high order (410) polynomial fitting,
the expressionf ðlÞ as a function of l is yielded, which can
accurately predict each value of Sgðx,y,zÞ. If the columns have
different values of width or shear strain, the sum is recalculated

and a new f ðlÞ can be yielded. Here, the relationship is briefly
given by

Hp,z ¼ f ðl,b,gÞpz: ð15Þ

Under a low external magnetic field, a dipole moment induced
linearly on each sphere particle is given by

p¼ 3mem0bVpH, ð16Þ

where mpandme denote the relative permeability of the particles
and elastomer matrix, respectively, and b¼ ðmp�meÞ=ðmpþ2meÞ � 1
when mp ¼ 103 and me ¼ 1. At a high magnetic field, the magnetic
nonlinearity and saturation of the particle magnetization are
described by the Frohlich–Kennely law [10]:

M¼
p

m0Vp
¼

wlH

1þwlH=Ms
, ð17Þ

where wlis the magnetic susceptibility in the low external field
and Ms is the saturation magnetization. When the field is low,
wlH=Ms is inclined to zero, and then Eq. (17) can be degraded into

p¼ m0VpwlH: ð18Þ

By comparing Eqs. (16) and (18), wl is obtained. Substituting into
Eq. (17), the relation between the dipole moment and the
magnetic field can be rewritten as

p¼
3mem0bVpH

1þ3mebH=Ms
: ð19Þ

From Eqs. (9), (15) and (19), pzis obtained as a function of
external field (H0), particle numbers in the column’s length and
width direction (l and b), and the imposed shear strain (g).
Combining this result with Eqs. (2), (3), (7) and (8), the effective
magnetic susceptibilityweff is obtained. On the other hand,

@weff

@g ¼
@weff

@f ðl,b,gÞ
@f ðl,b,gÞ
@g

¼
@weff

@f ðl,b,gÞ
@
P

gðx,y,zÞ

@g

¼
@weff

@f ðl,b,gÞ
X @gðx,y,zÞ

@g

¼
@weff

@f ðl,b,gÞ
kðl,b,gÞ, ð20Þ

where kðl,b,gÞ is the polynomial fitting result of the Sð@gðx,y,zÞÞ=@g.
By substituting the results of weff and @weff =@g into Eq. (1), the
field-induced shear strain is solved and the field-induced shear
modulus (DG) is calculated accordingly. In order to compare with
previous experimental results [7], in the present calculation, the
iron particle volume percentage is set as 11% and the shear strain
is set as 0.003 (except for research on the effect of shear strain,
shown in Fig. 6).

3. Results and discussions

Our previous experimental results [12] indicated that the
shear modulus of MR elastomers was topically saturated before
the external magnetic field reaching 1 MA/m. In this simulation,
the magnetic saturation field strength is set as H0¼1 MA/m.
Under this magnetic field, the MR elastomers’ saturated field-
induced shear modulus, for various particle columns with
different mean and variance of the length of particle columns,
was calculated and shown in Fig. 3. It is seen that the modulus
increases with the value of L and then gradually rises to a
maximum. The smaller the variance, the more quickly the field-
induced modulus reaches the maximum. This result implies that

W. Zhang et al. / Journal of Magnetism and Magnetic Materials 322 (2010) 3797–3801 3799
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the fabrication of MR elastomers with long columns is greatly
helpful to obtain the high effect. This can be achieved by applying
the strong field in curing time, using the low viscosity matrix and
adding high percentage iron particles. The result also suggests
that it is important to concentrate the length of column in the
mean value instead of the distribution in a wide range, as the
shear modulus of columns at a small mean length could still rise
to a large value if the variance is small. Therefore, curing time
should be prolonged, so that the particles have enough time to
aggregate into the columns with the same length in the external
uniform magnetic field.

In the microstructures and dynamic properties observed
previously [9], the saturated shear modulus was enhanced as
the increase of length of the short column (about less than 30
particles in the length direction), and it has little change as the
increase of length of the long column (about more than 80
particles in the length direction).

At a constant variance of 9, the field-induced modulus versus
the particle column width is calculated and shown in Fig. 4. As can
be seen from this figure, the shear modulus has an initially
evident decrease when the value of b is raised from 2 to 3; then it
shows a slightly decreasing trend when the value of b is further

increased. The previous observation [7] shows that the length and
the width of the columns were both increased by the increment of
the magnetic flux density applied in preparation. For the MR
elastomers prepared in magnetic flux densities of 400, 600, 800
and 1000 mT, the interparticles aggregated into column struc-
tures, which were consistent with the proposed model. The mean
particle numbers in length and width direction were measured as
(L¼10, b¼2), (L¼20, b¼3), (L¼30, b¼4) and (L¼40, b¼5)
roughly. And the microscopic observations of MR elastomers
samples are also shown in Fig. 5. It can be observed that the
chains have different lengths and widths, which can qualitatively
support the calculation results that the mean particle numbers in
length and width directions obey the Gaussian distribution. The
calculated field-induced shear moduli at these points were
marked with black dots in Fig. 4, and the experimental saturated
field-induced shear modulus of MR elastomers prepared in
different magnetic flux density was inserted in Fig. 4. It is
illustrated in Fig. 4 that the calculated and experimental results
agreed with each other within allowed errors. The small
discrepancy between them may be due to the ignorance of the
interaction among the particle columns. Indeed, the proposed
model improves the accuracy by multi-pole approximation where
the interaction among all the particles in the column is
considered.

The results of saturated field-induced shear modulus of other
MR elastomers models, which are based on the magnetic
interactions between two adjacent particles [7] and among the
particles in a single chain [8], are, respectively, 0.11 and 0.19 MPa,
which are both lower than the results of experimental and our
Gaussian distribution model.

The effect of external magnetic field strength and shear strain
amplitude on the field-induced shear modulus is illustrated in
Fig. 6. At any of applied shear strains from 0.001 up to 0.005, the
shear modulus increases steadily as the magnetic field increases.
The increasing trend shows a decreasing trend with magnetic
field, which is due to the nonlinearity and saturation of the
particle magnetization and is able to well explain the previous
experimental evidences. On the other hand, it can be seen from
Fig. 6 that field-induced shear modulus also has great dependence
on the amplitude of shear strain. At an external field of 1 MA/m,
the shear modulus of MR elastomers at the shear strain of 0.005 is
0.19 MPa. It can sharply rise to 0.99 MPa when the shear strain
reduces to 0.001. Fig. 6 indicates that the field-induced shear
modulus is nearly inversely proportional to the shear strain.
Similar results were reported by experimental studies [12,13]. The
present result might be helpful to the dynamic application
designed based on MR elastomers. In order to obtain a high MR
effect, their dynamic strain should be controlled in a low level.

Fig. 3. The field-induced shear modulus of MR elastomers when the value of mean

and the variance of length of columns are varied. Here, MR elastomers are

assumed to be exposed in a high magnetic field (1 MA/m), and with the same

width of the columns (b¼2).
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Fig. 5. Microscopic observations of MR elastomers samples by SEM.
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Furthermore, it is interesting to notice in Fig. 6 that the MR
elastomers under the small strain cannot be saturated until a
strong field is applied. When the amplitude of strain is 0.001, the
shear modulus does not reach a maximum even though the
external field is at 1 MA/m.

4. Conclusions

A Gaussian distribution model that examines the field-induced
shear modulus of the anisotropic MR elastomers has been
presented. The calculation results show that the field-induced
shear modulus was greatly affected by the distribution of the
length of the particle columns. High modulus can be induced
when the mean value of the length is large and the length is
concentrated in the mean value instead of distributed in a wide
range. The width of the columns also shows a slight influence on

the field-induced modulus. The thin columns can result in a little
better MR effect than the thick ones. In addition, it is also
demonstrated that the external field strength and shear strain
both have a nonlinear impact on the behavior of MR elastomers.

The calculation result of the Gaussian distribution model is
also compared with other conventional models and the relevant
published data. It is shown that this model agrees well with the
experimental evidence and indeed improves the accuracy of
prediction behavior of the magnetorheological elastomers.

Ongoing work on modeling of MR elastomers behaviors will
consider the magnetic interaction among the particle columns
and take the magnetic flux density distribution within the particle
network into account.
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