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Volume fraction of LM [%] Mass fraction of LM [%] 

0.00 0.00 

1.00 5.80 

5.00 24.30 

10.00 40.40 

15.00 51.84 

Table S1. The correspondence between the volume fraction and mass fraction of LM. 
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Figure S1. The diameter distribution of LM droplets. The average diameter of the LM droplets 
was 15.48 μm. 
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Figure S2. The energy dispersive spectrometer (EDS) mapping of LM/PBSE, and the related 
element mapping of Ga, In, Sn, Si, and O. 
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Figure S3. The comparison of the cold flow effect for PBSE and  PBSG. 
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Figure S4. The rheological testing of LM/PBSE specimens with different matrixes and LM 
volume fractions. (a-c) Storage modulus (��) versus frequency curves; (d-f) Loss modulus (���) 
versus frequency curves; (g-i) Loss factor (tan �) versus frequency curves. 
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Figure S5. The images of specimens of ΦLM = 0% and ΦLM = 15% LM/PBSE specimens with 
different matrixes before fracture strain. 
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Figure S6. The microscopic structure of the LM droplets during the uniaxial tension process. 
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Figure S7. The uniaxial cycling loading test for the LM/PBSE specimens with different matrixes 
under different strain amplitudes. (a-c) ΦLM = 0%; (d-f) ΦLM = 1%; (g-i) ΦLM = 5%; (j-l) ΦLM = 
10%; (m-o) ΦLM = 15%. 
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Figure S8. The energy dissipation density and energy dissipation rate for the LM/PBSE specimens 
with different ΦLM for different matrixes. (a-c) ε= 0.1; (d-f) ε= 0.2; (g-i) ε= 0.3; (j-l) ε= 0.4; (m-o) 
ε= 0.5 (The energy dissipation density was defined as the area of the stress hysteresis loop in the 
stress-strain curve, and the energy dissipation rate was defined as the ratio of the energy dissipation 
density to the area of the stress-strain curve in the loading stage). 
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Figure S9. (a) The diagram of the experimental device for crack propagation test; (b) The 
representative morphology of specimens in the initial state and fracture state. 
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Figure S10. The definition of the fracture toughness (Γ) of the LM/PBSE specimen. 
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Figure S11. The comparison of fracture strain (εf) and toughness (Γ) of solid inclusions (LM with 

a  melting point of 60°C) and room-temperature liquid inclusions LM. 
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Figure S12. The in-situ observation during the crack propagation process. The red region 
represented the elongation of the LM droplets at the crack tip. 
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Figure S13. The comparison of the CTOD for pure PBSE matrix (PBSG: VMQ = 1:1, ΦLM = 0%) 
and LM/PBSE elastomer (PBSG: VMQ = 1:1, ΦLM = 15%). 
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Figure S14. The comparison of the crack morphology for pure PBSE matrix (PBSG: VMQ = 1:1, 
ΦLM = 0%) and LM/PBSE elastomer (PBSG: VMQ = 1:1, ΦLM = 15%) from ε=0.50 to ε=0.80. 
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Figure S15. The rate of temperature change of specimens for the matrix PSBG: VMQ=1:1 with 
different LM volume fractions (ΦLM=1%, 5%, 10%, 15%). (a) Heating process; (b) Cooling 
process. 
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Figure S16. The diagram of the lap-shear experiment. 
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Figure S17. The reversible ability of the color conversion of the LM/PBSE butterfly. (a) The 
initial state of the butterfly; (b) The heating process of the butterfly above Ttran; (c) The cooling 
process of the butterfly below Ttran. 
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Figure S18. The heat dispersion ability of CP and LM/PBSE. 
 
Movie S1.  
The comparison of the crack morphology for pure PBSE matrix and LM/PBSE elastomer. 
Movie S2.  
The full-field temperature distributions of the LM/PBSE on the surface of specimens during the 
heating and cooling process. 
Movie S3.  
The thermal camouflage ability of the LM/PBSE butterfly. 
Movie S4.  
The thermal dissipation behavior for XHP LED at the rated voltage between the stretched 
LM/PBSE matrix and CG matrix. 
Movie S5.   
The thermal dissipation behavior for XHP LED over the rated voltage between the LM/PBSE 
matrix and CG matrix. 
Movie S6 
The LM/PBSE wearable wristband application for outdoor sports at night.  
Movie S7 
The LM/PBSE wearable wristband application for unpredictable power failure occasions.  
Movie S8 
The heat dissipation property of the LM/PBSE elastomer and a commercial product. 
 


