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Volume fraction of LM [%] Mass fraction of LM [%]
0.00 0.00
1.00 5.80
5.00 24.30
10.00 40.40
15.00 51.84

Table S1. The correspondence between the volume fraction and mass fraction of LM.
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Figure S1. The diameter distribution of LM droplets. The average diameter of the LM droplets
was 15.48 pm.



Figure S2. The energy dispersive spectrometer (EDS) mapping of LM/PBSE, and the related
element mapping of Ga, In, Sn, Si, and O.
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Figure S3. The comparison of the cold flow effect for PBSE and PBSG.
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Figure S4. The rheological testing of LM/PBSE specimens with different matrixes and LM
volume fractions. (a-¢) Storage modulus (G") versus frequency curves; (d-f) Loss modulus (G'")
versus frequency curves; (g-i) Loss factor (tan §) versus frequency curves.



Figure S5. The images of specimens of @Lm = 0% and &m = 15% LM/PBSE specimens with
different matrixes before fracture strain.



Figure S6. The microscopic structure of the LM droplets during the uniaxial tension process.
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Figure S7. The uniaxial cycling loading test for the LM/PBSE specimens with different matrixes
under different strain amplitudes. (a-¢) @m = 0%; (d-f) @Pm = 1%; (g-i) Pm = 5%; (j-1) v =
10%; (m-0) @m = 15%.
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Figure S8. The energy dissipation density and energy dissipation rate for the LM/PBSE specimens
with different @Lm for different matrixes. (a-¢) e=0.1; (d-f) e= 0.2; (g-i) &= 0.3; (j-1) &= 0.4; (m-o0)
&= 0.5 (The energy dissipation density was defined as the area of the stress hysteresis loop in the
stress-strain curve, and the energy dissipation rate was defined as the ratio of the energy dissipation
density to the area of the stress-strain curve in the loading stage).
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Figure S9. (a) The diagram of the experimental device for crack propagation test; (b) The
representative morphology of specimens in the initial state and fracture state.
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Figure S10. The definition of the fracture toughness (/) of the LM/PBSE specimen.
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Figure S11. The comparison of fracture strain (ef) and toughness (I") of solid inclusions (LM with

a melting point of 60°C) and room-temperature liquid inclusions LM.
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Figure S12. The in-situ observation during the crack propagation process. The red region
represented the elongation of the LM droplets at the crack tip.
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Figure S13. The comparison of the CTOD for pure PBSE matrix (PBSG: VMQ = 1:1, @.m = 0%)
and LM/PBSE elastomer (PBSG: VMQ = 1:1, &Lm = 15%).
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Figure S14. The comparison of the crack morphology for pure PBSE matrix (PBSG: VMQ = 1:1,
@M = 0%) and LM/PBSE elastomer (PBSG: VMQ = 1:1, @M = 15%) from &=0.50 to £=0.80.
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Figure S15. The rate of temperature change of specimens for the matrix PSBG: VMQ=1:1 with
different LM volume fractions (@Lm=1%, 5%, 10%, 15%). (a) Heating process; (b) Cooling

process.
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Figure S16. The diagram of the lap-shear experiment.
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Figure S17. The reversible ability of the color conversion of the LM/PBSE butterfly. (a) The
initial state of the butterfly; (b) The heating process of the butterfly above Ttan; (¢) The cooling
process of the butterfly below Tiran.
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Figure S18. The heat dispersion ability of CP and LM/PBSE.

Movie S1.

The comparison of the crack morphology for pure PBSE matrix and LM/PBSE elastomer.

Movie S2.

The full-field temperature distributions of the LM/PBSE on the surface of specimens during the
heating and cooling process.

Movie S3.

The thermal camouflage ability of the LM/PBSE butterfly.

Movie S4.

The thermal dissipation behavior for XHP LED at the rated voltage between the stretched
LM/PBSE matrix and CG matrix.

Movie SS.

The thermal dissipation behavior for XHP LED over the rated voltage between the LM/PBSE
matrix and CG matrix.

Movie S6

The LM/PBSE wearable wristband application for outdoor sports at night.

Movie S7

The LM/PBSE wearable wristband application for unpredictable power failure occasions.

Movie S8

The heat dissipation property of the LM/PBSE elastomer and a commercial product.
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