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Simulation of the optimal diameter and wall
thickness of hollow Fe3O4 microspheres in
magnetorheological fluids†

Lei Pei, Haoming Pang, Kaihui Chen, Shouhu Xuan* and Xinglong Gong *

This work reported a simulation study on the optimal diameter (D) and wall thickness (H) of hollow Fe3O4

microspheres to improve the magnetorheological (MR) effect. Modified formulae for the magnetic dipolar force,

van der Waals force, and hydrodynamic drag force were employed in the simulation model. Typical evolution of

shear stress and microstructures in steady shear flow was obtained. The shear stress–strain curve was divided

into linear, fluctuant, and homeostasis regions, which were related to the inclination of particle chains and the

lateral aggregation. For hollow Fe3O4 microspheres with different diameters and wall thicknesses, the shear stress

curves collapsed onto a quadratic master curve. The best wall thickness was H = 0.39D for a 20 wt% MR fluid

and H = 0.35D for a 40 wt% MR fluid, while the optimal diameter was D = 1000 nm and D = 100 nm, respec-

tively. The maximum shear stress of the 40 wt% MR fluid was twice that of the 20 wt% MR fluid. The change of

shear stress was due to the competition that results among the magnetic interaction, number of neighbors,

tightness, and orientation of the particle chains. Simulated dimensionless viscosity data as a function of Mason

number for various diameters, wall thicknesses, and weight fractions collapsed onto a single master curve. The

simulated shear stress under both a magnetic field and shear rate sweep matched well with experiments.

Introduction

Magnetorheological (MR) fluid is a two-phase system consisting
of well dispersed magnetic particles and a nonmagnetic
matrix.1 Due to the magnetic dipolar forces, the viscosity and
yield stress of this smart material could increase several orders
of magnitude in milliseconds. The reversible and controllable
MR effect means that MR fluid is widely applied in magnetic-
thermal therapy, drug targeting delivery, commercial dampers,
and sensors etc.2–7 Fe3O4 micro or nanoparticles are commonly
used in conventional MR fluids as a consequence of their high
saturation magnetization, super-paramagnetic property, and
common availability. Raising the MR effect and overcoming
the sediment problem are the main challenges for the Fe3O4-
based MR fluid. The former is related to the weight fraction,
magnetic permeability, shape and morphology of the magnetic
particles.8–10 It is reported that a flaky and fibrous particle-
based MR fluid exhibited excellent MR effects.11,12 However,
the aforementioned particles cannot overcome the inherent
sedimentation due to the density mismatch with the matrix.

The sediment problem is usually reduced through bi-dispersing
and surface coating methods.13,14 The stabilization mechanisms of
suspensions containing octane droplets and particles modified with
short amphiphiles were investigated.15 Emulsion stabilization could
be achieved through a compact layer of particles around the oil
droplet or a percolating network of particles spanning throughout
the continuous phase. Improving the inner particle architecture is a
novel approach to overcome sedimentation, which has attracted
researchers’ interests in the past few decades. A core–shell and
hollow architecture can enlarge the MR effect and decrease the
particle density at the same time.16,17 Magnetic materials are
often immobilized onto the surface of the non-magnetic tem-
plate to form core–shell particles, such as CNT@Fe3O4 and
PS@Fe3O4 microspheres.18,19 Hollow spheres possess a larger spe-
cific surface area and larger weight fraction of magnetic material
compared to core–shell particles, which will further improve the MR
effect.20 The novel polystyrene/Fe3O4 hollow microspheres exhibited
a better MR effect than pure Fe3O4 MR fluid and a low apparent
density of 1.5 g cm�3.21 An et al. prepared hollow Fe3O4 nano-
particles via a solvothermal method.22 The relative MR effect in shear
viscosity reached 19 600% in a 343 kA m�1 magnetic field. Diameter,
wall thickness, and weight fraction of hollow Fe3O4 microspheres
play important roles in the MR effect of MR fluid. However, the
optimal diameter and wall thickness have not been investigated yet.
Therefore, a systematic study of this hollow inner architecture was
urgently required for both applications and fundamental interest.
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With the help of theoretical progress, simulation has
become an effective method to study MR fluid due to the
advantages of low-cost and easy to adjust parameters. Several
numerical methods, such as particle level dynamic simulation,
the finite element method (FEM), computational fluid
dynamics (CFD), and the Monte Carlo method, have been
employed to study conventional MR fluid under different kinds
of flows.23–26 A combination of experimental and simulation
studies was carried out for poly-disperse MR fluid at the start of
the shear flow.27 The variations of yield stress could be
explained by simulated microstructures and pair distribution
functions. MR fluids with different initial microstructures
under squeeze flow were analyzed by using particle level
dynamic simulations.28 The simulated normal force and yield
compressive stress showed a linear dependence on the particle
volume fraction and the square of magnetic field strength,
which was in agreement with the experiments. In particular,
particle level dynamic simulations were adopted to investigate
the shear stress of hollow Fe3O4 based MR fluid at various shear
rates.29 Simulations matched well with experiments, which was
helpful to understand the advantage of a hollow architecture.
Therefore, simulation is able to reveal the MR mechanism at
the microscopic level. This effective approach is also promising
to find the optimal inner architecture of hollow Fe3O4 micro-
spheres and guide the preparation of magnetic particles.

In this work, a novel particle level dynamic simulation was
developed to find the best diameter and wall thickness of
hollow Fe3O4 microspheres to improve the MR effect and
reduce sedimentation. The simulation model including precise
formulae for dipolar force, van der Waals force, and hydro-
dynamic drag force was firstly clarified. Typical evolutions of
microstructures, shear stress, and magnetic potential energy in
steady shear flow were investigated. The microstructures were
analyzed both qualitatively and quantitatively. Then, the MR
effects of hollow microspheres with different diameters, wall
thicknesses, and weight fractions were systematically studied.
The optimal diameter and wall thickness were obtained. A
possible mechanism was developed to explain the variation of
shear stress. Simulated viscosity data were discussed by using
the Mason number. Finally, simulated shear stress as a func-
tion of magnetic field and shear rate matched well with
experimental data.

Simulation model
Simulation set-up

Particle level dynamic simulations were carried out to investigate
the microstructures and MR effects of MR fluid under steady
shear flow. The simulation methodology was based on the dipole
model. The MR fluid was regarded as a suspension of mono-
disperse hard microspheres in a Newtonian fluid. A Cartesian
coordinate system centered in a vertex of the simulation box was
chosen, as shown in Fig. 1a. The simulation box was a cuboid
with edge lengths of Lx = Ly = 0.5Lz. It was assumed that the
matrix could enter hollow microspheres. But the matrix could
not further flow into or out of the hollow microspheres during
the transient shear flow. As the wall thickness and diameter of
the particles changed, the weight fraction and volume fraction of
hollow microspheres remained unchanged. The size of the
simulation box also changed to ensure that the number of
particles remained unchanged (N E 2000). Periodic boundary
conditions were applied in the y–z plane and z–x plane, while
shear boundary conditions were applied in the x–y plane. At the
initial state, the MR fluid underwent a steady shear flow along
the x-axis (_g = 100 s�1). The shear stress could be expressed as
szx. Identical spherical particles were randomly distributed in
the simulation box and moved along with the matrix. The Fe3O4

microspheres were free to move without the external field for 106

time steps to eliminate the overlaps among particles caused by
random distribution. After that, an external magnetic field was
applied along the z-axis. Then, the microstructure of the MR
fluid started to evolve until the system reached homeostasis. The
matrix was assumed to remain in steady shear state during
the whole simulation. The MR effect was mainly ascribed to
the interaction of microspheres.

Inter-particle forces

When a Fe3O4 microsphere is placed in a uniform magnetic
field H, the magnetic moment vector mi can be determined by
an exponential function as:

mi ¼MVi
H

H
¼Ms e

� C1
HþC2Vi

H

H
(1)

where M is the magnetization of Fe3O4, H = |H|, Vi is the volume
of the target particle, Ms = 71.7 emu g�1 is the saturation

Fig. 1 (a) Schematic diagram of the simulation box. (b) Magnetic force and (c) van der Waals force between a pair of hollow microspheres as a function
of r and H/D (y = 01). Fm

0 = 3m0mimj/4pd4 and FvdW
0 = 8A/3d. mi and mj are magnetic moments of hollow microspheres. (d) The attenuation of inter-

particle forces versus r. The two identical hollow particles (H = 0.2D) were assumed in a head-to-tail configuration along the z-axis. Fr
0 = 3m0msimsj/2pd4

+ 25FvdW
0 /16. Vertical lines indicated the truncation radii. Dashed dotted lines: magnetic dipolar force, solid lines: van der Waals force, and dashed lines:

excluded volume force.
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magnetization, and C1 = 265.7 Oe and C2 = 39.0 Oe are constants.
C1 measures the speed towards saturation. C1 and C2 together
characterize the magnetization near zero magnetic field
strength. In the super-paramagnetic state, the magnetic hysteresis
loop is usually described by the Langevin function as:30

M ¼Ms coth xð Þ � 1

x

� �
(2)

where x = MsVpH/kBT and Vp represents the average volume of
magnetic particles.31 Both functions match well with the experi-
ments (Fig. S1, ESI†). In a sufficiently strong magnetic field, x c 1
and H c C2. Eqn (1) and (2) can be derived from the same form:

M ¼Ms 1� C1

H

� �
¼Ms 1� kBT

MsVpH

� �
(3)

Constant C1 approximately represent kBT/MsVp. Both eqn (1) and
(2) should express the same linear dependence on the magnetic
field strength near the zero field region,

dM

dH

� �
H¼0
¼ C1

C2
2
e
�C1
C2 ¼MsVp

3kBT
(4)

Constant C2 can be calculated from the transcendental equation.
All the microspheres are assumed to be magnetized instantly

and equally in an MR fluid. The direction of the magnetic
moment is parallel to the external field. At the same time, the
magnetized particle also induces a magnetic field in the
surrounding space as:

H i ¼ �
1

4pr3
mi � 3 mi � r̂ð Þr̂½ � (5)

where r denotes a spatial vector from the center of particle i to
the spatial point. r = |r| and r̂ = r/r. If another particle is placed
within the field Hi, it will be magnetized by particle i. After
several iterations, the magnetization of each microsphere is
determined. Finally, the magnetic moment of a single
particle is:

mi ¼Ms e
� C1

H locj jþC2Vi
H loc

Hloc
; H loc ¼ H þ

X
jai

H j (6)

where Hloc/Hloc indicates the direction of the magnetic moment
vector. Linear superposition is applied here. Hollow and solid
microspheres have the same bulk magnetization.29 The mag-
netic moment of a hollow microsphere is in proportion to the
volume of the solid part. Eqn (1) and (6) are also applicable to
hollow particles.32

The dipolar force of particle i exerted by particle j is:

Fm
ij ¼

3m0
4prij4

cm �mi �mj þ 5mi � tmj � t
� �

t
�

� mi � tð Þmj � mj � t
� �

mi

	 (7)

where rij stands for the distance between two particles. t is the
positional vector from particle i to particle j. The magnetic
permeability of the matrix is considered equal to m0 = 4p �
10�7 N A�2. According to the theoretical analysis, a correction

factor cm is introduced for adjusting the dipole model to two
proximal particles.33 cm is calculated as:34

cm ¼
1þ 3� 2rij

dij

� �2
0:6017

1þ e jyj�34:55ð Þ=12:52 � 0:2279

� �
r � 1:5dij

1 r4 1:5dij

8>><
>>:

(8)

Here, y in degrees is the angle between t and H. di and dj are the
diameters of the particles, dij = (di + dj)/2.

The van der Waals force between two microspheres can be
expressed as:35

FvdW
ij ¼ 8A

3
Lijdidj

1

4Lij
2 � di þ dj

� �2 � 1

4Lij
2 � di � dj

� �2
" #2

t

(9)

Here, A = 3 � 10�20 J is the Hamaker constant of Fe3O4

particles.36 Lij = max[rij, dij + hmin], and hmin = 0.01dij were
used.37 Under the circumstance that two microspheres almost
touch each other, eqn (9) evolves to the conventional form:

FvdW
ij ¼ A

24

didj

dij Lij � dij
� �2 t (10)

Both the dipolar force and van der Waals force belong to
electromagnetic force and satisfy the superposition principle.
To compute the magnetic force, each hollow Fe3O4 microsphere
is regarded as one solid sphere with the bulk magnetization M
and a small solid sphere as large as the hollow part located at
the same place with a negative bulk magnetization �M. The
magnetic force between two hollow microspheres contains a
big–big interaction, a pair of big–small interactions, and a
small–small interaction. If r Z 1.5dij, hollow microspheres
are equivalent to solid ones with an effective magnetic moment.
If r o 1.5dij, the point dipole model expressed a certain
deviation compared to theoretical results.33 Correction factor
cm is separately adopted in the three parts of magnetic force.
The van der Waals force is calculated in a similar way. Both
interactions are a function of H/D (Fig. 1b and c). Thin-walled
microspheres exhibited a weaker relative magnetic force and a
faster attenuation speed. The hollow architecture also
expressed an influence on the van der Waals force for proximal
particles.

To avoid the overlap among microspheres, the excluded
volume force is taken into account as:

Fr
ij ¼ � x

3m0msimsj

4pdij4
þ FvdW

ij

� �
10
�10

rij
dij
�1


 �
t (11)

where msi and msj are the saturation magnetization of the target
microspheres. x = 2 is chosen in order to approximately cancel
out with the dipolar force and van der Waals force when two
particles were in a head-to-tail configuration along the field
direction. Here the formula of the van der Waals force is chosen
as eqn (10) to avoid complicated computing. This excluded
volume force also works without the magnetic field. Fig. 1d
shows that the inter-particle forces attenuate as the distance
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increases. For simplicity, the truncation radius for the magnetic
force, van der Waals force, and excluded volume force is 5dij,
2.5dij, and 1.1dij, respectively. The truncation radii are large
enough for simulations (Fig. S2, ESI†).

Particle–matrix interaction

The particle–matrix interaction contains hydrodynamic drag
force, Brownian force, and buoyancy. The most frequently-used
matrices (water, silicone oil) all belong to the Newtonian fluid.
The laminar flow and turbulent flow can be distinguished by
Reynolds number, which is defined as:

Re ¼ rUL

Z
(12)

Here, r and Z are the density and viscosity of the matrix,
respectively. U is the characteristic velocity. L is the character-
istic length of the flow. In the rheological tests, the flow of the
matrix is completely laminar flow (Re = O(10�4)). Therefore, the
hydrodynamic drag force can be modeled by Stokes law:

Fh
i = �3pZdich(vi � ui) (13)

where vi � ui is the velocity of particle i relative to the matrix. In
concentrated MR fluid, the surrounding particles will enlarge
the drag force. ch is a correction factor for Fh

i , presented by He
et al. as:38

ch ¼
1þ 5:81ja

1� jað Þ3
þ 0:48

ffiffiffiffiffiffi
ja

3
p

1� jað Þ4
þ ja

3Re 0:95þ 0:61ja
3

1� jað Þ2

" #

(14)

Here, ja = j/S is the apparent volume fraction. j is the volume
fraction of the MR fluid and S is the solid proportion of hollow
microspheres. Due to the extremely low Reynolds number, the
last term in eqn (14) is negligible.

The random Brownian force has a great influence on nano-
spheres (D E 10 nm). For the hollow microspheres in this study
(D E 100 nm), the intensity of the magnetic force is much stronger
than the thermal motion and buoyancy (Fig. S5, ESI†). Simulation
results with Brownian force are very close to those not considering
Brownian force. Thus the Brownian force, gravity, and buoyancy of
hollow Fe3O4 microspheres are neglected.

The validity of the particle–matrix model is characterized by
Knudsen number, which is defined as:

Kn ¼ l
L

(15)

where l is the mean free path of the matrix molecules. L is the
characteristic length. Kn r 0.1 means that the matrix can be
regarded as a continuous medium.39 Liquid molecules in MR
fluid are not free to move. Thus, l is an approximate to the cube
root of molecule volume:

l �
ffiffiffiffiffiffiffiffiffiffiffiffi
M

r0NA

3

s
(16)

Here, M is the molecular mass of the matrix. NA is Avogadro’s
number. For an MR fluid based on water, the particle–matrix

model applies to microspheres with a diameter D Z 10 nm. For
the MR fluid based on silicone oil (Z = 0.01 Pa s M = 1.2 kg mol�1),
the aforementioned model applies to microspheres with a
diameter D Z 130 nm.

Equation of motion

Due to the super-paramagnetic property of Fe3O4 microspheres, the
magnetic torque acting on a single particle is so exiguous that the
rotational motion is neglectable. Particle inertia has little effect on
particle motion in homeostasis. However, on applying an external
field, the particles moved with large accelerations. To avoid the leap
in velocities and confirm the convergence of the simulation, the
inertia of the microspheres is taken into account during the
calculation. Considering the forces mentioned above, the equation
of motion is constructed as:X

jai

Fm
ij þ FvdW

ij þ Fr
ij


 �
þ F

g
i þ Fh

i ¼ mpiai (17)

where mpi is the mass of particle i. The modified velocity-Verlet
algorithm is employed to solve eqn (17), in which the empirical
parameter is chosen as 0.65.40 The magneto-induced stress tensor r
and magnetic potential energy Um are presented as:

r ¼ 1

V

X
i

X
j4 i

rijF ij �mpi vi � uið Þ vi � uið Þ
" #

(18)

Um ¼ m0
X
i

�mi �H þ
X
j4 i

1

4prij3
mi �mj � 3mi � tmj � t
� �" #

(19)

Here, V is the volume of the simulation box. Fij is the total inter-
particle force between these two particles. Um consists of the
particle–external field section and inter-particle section. Pre-
viously we found that the deviation between the point dipole
model and theoretical results in magnetic energy (r5%) is
much smaller than that in magnetic force (r33%).34 Thus the
point dipole approximation is still applied in eqn (19). The
particle pair distribution function is employed to investigate
the microstructures quantitatively. As a consequence of the
spherical and azimuthal symmetries in the particulate inter-
actions, this function can be easily obtained using the following
equation:41

g r; yð Þ ¼ V

N2

X
i

X
jai

d r� rij
� �

d y� yij
� �* +

(20)

where N represents the number of particles and the bracket
means volume average. The radial distribution function and
angular distribution function can be obtained simply by the
integration of eqn (20):

g rð Þ¼
ðp
0

g r; yð Þ sin ydy (21)

g yð Þ ¼
ðRc

0

4pr2g r; yð Þdr (22)

where the truncation radius is Rc = 5D.
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Experimental verifications

In order to testify the accuracy of the simulations, a hollow
Fe3O4 microsphere-based MR fluid was prepared. The shear
stress in a magnetic field sweep was compared to the simula-
tion results.

Chemicals

Citric acid trisodium salt dihydrate (C6H5Na3O7�2H2O), urea
(CO(NH2)2), iron(III) chloride hexahydrate (FeCl3�6H2O), poly-
acrylamide 3 000 000 (PAM, (C3H5NO)n), and polyvinylpyrroli-
done (PVP, (C6H9NO)n) were used in the synthesis of hollow
Fe3O4 microspheres. All the reactants were purchased from
Sinopharm Chemical Reagent Co, Ltd (analytical graded) and
used without further purification.

Preparation of hollow Fe3O4 microspheres

The hollow Fe3O4 microspheres were prepared via a hydrother-
mal method.33 Firstly, 16 mmol C6H5Na3O7�2H2O, 24 mmol
CO(NH2)2, and 8 mmol FeCl3�6H2O were dissolved in 80 ml
secondary distilled water. The mixture was vigorously stirred.
Then, 0.6 g PAM and 0.2 g PVP were mixed into the solution.
The mixture was kept stirring at 300 rpm for about 1 h to ensure
that the reagents dissolved completely. The solution was trans-
ferred into a 100 ml reaction kettle and maintained at 200 1C
for 12 h. After cooling down to room temperature, the black
precipitate was ultrasonically washed with distilled water and
ethanol 4 times. Finally, the precipitate was dried in a vacuum
desiccation oven for 24 h to obtain pure hollow Fe3O4 micro-
spheres. In addition, the above hollow microspheres were
dispersed into water and silicone oil (10 cSt). MR fluid samples
with a weight fraction of 5 wt%, 10 wt%, and 20 wt% for each
kind of matrix were prepared.

Characterization

The microscopic morphology of the microspheres was observed
by using a transmission electron microscope (TEM) (JEM-
2100F, JEOL Co., Japan) with an accelerating voltage of
200 kV. The magnetization property at room temperature was
characterized via a magnetometer (SQUID VSM, Quantum
Design Co., America) with an applied field sweep from �30 kOe
to 30 kOe.

The MR effect of MR fluid based on the hollow Fe3O4 was
measured by using a commercial rheometer (Physica MCR 302,
Anton Paar Co., Austria). Typically, the samples were imposed
between the upper plate (PP20/MRD) and the base bed. The
parallel gap was fixed as 0.8 mm. Each test was conducted at
25 1C. The magnetic field sweep tests were carried out at a
constant shear rate of 100 s�1. A pre-shear was carried out for
30 s to ensure that the samples remain in the steady shear state.
Then the magnetic flux density linearly increased versus time
from 0 T to 0.9 T. In the shear rate sweep tests, the external
magnetic field was set at 0 T, 0.11 T, 0.22 T, 0.44 T, and 0.88 T,
respectively. The shear rate logarithmically increased with time
from 0.1 s�1 to 100 s�1.

Results and discussion
Typical evolution of microstructures and shear stress in steady
shear flow

The microstructures of the MR fluid had a great influence on the
MR effect. Firstly, the typical rearrangement of hollow Fe3O4

microspheres in steady shear flow was investigated. Meanwhile,
the magneto-induced shear stress and potential energy density
were analyzed. In this section, a steady uniform magnetic field
B = 0.88 T was chosen as an example. This magnetic field could
ensure that the MR fluid exhibited the maximum MR effect. The
shear rate was set at 100 s�1. The diameter and wall thickness of
the hollow magnetic microspheres were set at 300 nm and 60 nm,
the same as the samples prepared in experiments. The weight
fraction of Fe3O4 was 20 wt%. The MR fluids could exhibit an MR
effect on the order of milliseconds, which corresponded to a shear
strain g = 1. In order to reduce the time consumption, the
simulation terminated as the shear strain reached g = 2. The results
of shear stress were the average of 3 times.

Fig. 2 shows the snapshots of microstructures in an MR fluid
at different shear strains. The hollow microspheres were
plotted as solid spheres here. All the hollow Fe3O4 micro-
spheres were chaotic at the beginning of the simulation. Then
the magnetic phase in the MR fluid tended to align along the
magnetic field direction (z-axis) to decrease the magnetic
energy. The microspheres rapidly formed many chains with
different lengths (g = 0.04). Furthermore, the one-dimensional
microstructures inclined to the shear direction (g = 0.25). The
aggregation along the flow direction (x-axis) started. When the
shear strain became large enough, particle chains were
destroyed by the hydrodynamic force and rebuilt by the mag-
netic dipolar force. During the destruction and recombination
process, the particulate chains drew close in the lateral direc-
tion ( y-axis) as the matrix flowed (g = 1.00). Several cluster
microstructures appeared in the simulation box. The particle
aggregates moved to several separated planes when the shear
strain reached g = 2.00. The separation distance of two particle
lamellae is larger than the truncation radius of magnetic
dipolar force. Due to the periodic boundary conditions, the
isolated particle belongs to the cluster microstructures in the
next simulation box. There is seldom a single Fe3O4 micro-
sphere in the MR fluid.

To characterize the field-induced aggregation process, the
evolution of shear stress, magnetic potential energy per particle
(|Um|/N), and number of neighbors per particle (Nnear, within a
center-to-center distance of 2.5D) were plotted as shown in
Fig. 3a and b. The evolution was divided into four parts. The
shear stress started with an approximately linear increase,
which was similar to the linear elastic region of solids at small
strains (Zone I and II). When the shear strain reached 0.25, the
shear stress increased with fluctuation in a lower speed (Zone
III). Then, the shear stress started to fluctuate and finally
reached homeostasis (Zone IV). The aggregation on the x-axis
and y-axis contributed to the shear stress. The average stress
from g = 1 to the end of the simulation could represent the
macroscopic stress.
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Due to the particle–external field interaction, each hollow
Fe3O4 microsphere gained an initial magnetic potential energy
of �4.42 � 10�15 J after the simulation started, which is not
reflected in Fig. 3b. Then the energy density sharply decreased
(Zone I), which was much faster than the increase of shear
stress. This phenomenon was mainly ascribed to the aggrega-
tion along the z-axis. After that, the energy density gradually
decreased to the plateau. Nnear generally increased as the shear
strain increased to g = 1.00. The slope gradually decreased from
Zone I to Zone III, which was associated with the aggregation
along the z-axis, x-axis, and y-axis, respectively. In Zone IV, Nnear

reached homeostasis. According to eqn (7) and (18), close ranged
microspheres had a greater contribution to the stress tensor.
Larger Nnear was helpful for generating larger shear stress.

At the initial state, both the distribution functions were
horizontal lines located at G = 1 (Fig. 3c and d), consistent
with the random distribution. Then, an obvious main peak
appeared at the position r/D = 1 in the radial distribution
function. Several other peaks were at the positions r/D = 1.75,
1.95, 2.15, 2.65, and 2.95. The position of the peaks almost
never changed while the peak values slightly increased as the
shear strain increased. The peak value in the radial distribution
function reflected the tightness of particle aggregates. Magnetic
microspheres drew close to each other and formed some short-
range ordered microstructures soon after applying the external
field. The tightness of the aggregates kept growing until home-
ostasis. In the angular distribution function curves, there were
two peaks at y = 0–31 and y = 177–1801. From Zone I to Zone IV,
the peak value remarkably decreased from 100 to 17.8. The two
troughs at y = 451 and y = 1351 developed into a low plateau.
The angular distribution function reflected the inclined angle
of the particle chains, which had a great effect on the shear
stress. Particle clusters tended to incline at an angle between 01
and 301. Meanwhile, microspheres in the horizontal alignment
significantly decreased.

MR effect of MR fluids based on hollow microspheres with
different diameters and wall thicknesses

A. For a diluted MR fluid. It was important to understand
how the shear stress and microstructures varied if the diameter
(D) and wall thickness (H) of the hollow Fe3O4 microspheres
changed. An MR fluid with a weight fraction of 20 wt% was
chosen as an example due to the common adoption in rheo-
logical tests. Here, the diameter of the microspheres was set at
D = 100 nm, 300 nm, 500 nm, and 1000 nm. It was difficult to
prepare hollow Fe3O4 nanoparticles. Hollow spheres smaller
than D = 100 nm were not taken into account. The wall
thickness increased from H = 10 nm to H = 0.5D. Thus the

Fig. 2 Microstructures of MR fluids based on the hollow Fe3O4 microspheres at different shear strains: g = 0, 0.04, 0.25, 1.00, and 2.00. (a) Top view,
(b) perspective view.

Fig. 3 (a) Shear stress versus shear strain curves from each performance
of the program and the averaged value. (b) Magnetic potential energy and
number of neighbors per particle versus shear strain. (c) Radial distribution
function and (d) angular distribution function at different shear strains.
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solid proportion of hollow microspheres S varied from 16.9% to
100%. The external magnetic field was fixed at 0.88 T while the
shear rate was set at 100 s�1.

Fig. 4a shows the shear stress as a function of wall thickness.
At the same diameter, the shear stress firstly increased as the
wall thickness increased until H = 0.4D and then slightly
decreased near the maximum H. If the wall thickness remained
unchanged, smaller hollow microspheres expressed a higher
shear stress. All the curves collapsed onto a master curve in
dimensionless abscissa unit H/D (solid line in Fig. 4b). Shear
stress had a quadratic dependence on H/D, which was t =
�695(H/D � 0.39)2 + 110. The optimal wall thickness obtained
from the master curve was H = 0.39D, while the optimal
diameter was D = 1000 nm. Magnetic potential energy per
particle reflected the intensity of inter-particle dipolar force
(Fig. 4c). |Um|/N increased as the wall thickness increased,
which was faster than the increase of the square of hollow
microsphere volume (solid line). This was because the tightness
of the particle aggregates increased accordingly. Under the same
H/D, |Um|/N was in proportion to the cube of particle diameter.
In Fig. 4d, all the Nnear curves collapsed onto an exponential
decayed master curve. Although the diameter changed, hollow
microspheres with the same H/D formed similar microstruc-
tures. Particle aggregates enlarged or reduced in proportion.
Nnear was only associated with the apparent volume fraction ja.
The radial distribution function (Fig. 4e) and the following
angular distribution function (Fig. 4f) were obtained from micro-
structures when the instantaneous shear stress was equal to the

average shear stress. G(r)max did not grow linearly with the
apparent volume fraction. The diameter of the particles had a
great influence on G(r)max. The peak values mainly achieved a
maximum at a certain wall thickness H = 0.4D. The orientation of
the particle chains played an important role in MR effects. The
magneto-induced shear stress between two microspheres as a
function of y and S is shown in Fig. S7 (ESI†). The contribution
of the particle chain orientations to shear stress could be
expressed by the following equation instead of the peak value
of the angular distribution function.

sx� ¼
ðp
0

r cos y
Fm
x

Fm
0 d4r�3

GðyÞ sin ydy (23)

Here, r cosyFm
x /Fm

0 d4r�3 referred to the dimensionless shear
stress between a pair of particles. The main contribution of
shear stress was from magnetic interactions. Eqn (23) could
reflect the quality of the orientation of the particle chains from
the point of magnetic force without the influence of particle
diameter and magnetic field strength. If the microspheres
formed cluster or lamellar microstructures, sx* could be
regarded as the total contribution of particle chains in different
directions. The influence of the azimuth was negligible, because
there were few interactions between particle lamellae. sx*
reached the maximum at H = 0.4D. D = 300 nm microspheres
presented an advantage in radial distribution function but a
disadvantage in particle chain orientations. In summary, the
maximum shear stress of D = 100 nm microspheres was larger
than that of D = 300 nm microspheres because of the stronger
van der Waals force. D = 1000 nm microspheres possessed larger
inertia, so the microstructures were difficult to be destroyed by
the matrix. Particle aggregates could remain in the optimal
orientation for a long time, thus D = 1000 nm microspheres
exhibited the best MR effect. Thin-walled hollow microspheres
presented a poor MR effect mainly because of the weak magnetic
interaction. The sx* of thin-walled hollow microspheres was also
not conducive to the shear stress. The intensity of magnetic force
increased due to the increasing wall thickness. The particle
aggregates also became more compact. At the same time, ja

decreased, leading to a decrease in Nnear. The competition of the
aforementioned factors led to an increase in shear stress versus
H/D. When the wall thickness was H 4 0.4D, |Um|/N and Nnear

reached a plateau. Shear stress slightly decreased mainly due to
the change in G(r)max and particle chain orientations. The
macroscopic shear stress was the result of competition among
the magnetic interactions, number of neighbors, tightness of the
microstructures, and orientation of the particle chains.

The change of wall thickness also had a great influence on
the microstructures. Fig. 5 shows snapshots of a 20 wt% MR
fluid based on microspheres with D = 300 nm and different wall
thicknesses at the end of the simulation. Here the hollow
microspheres were plotted as solid ones. As the wall thickness
changed, the size of the simulation box changed proportion-
ately in order to ensure that the number of particles remains
unchanged. Each subfigure had a different display scale. When
the wall thickness was H = 10 nm, hollow particles formed thick
lamellar microstructures. If the wall thickness increased to

Fig. 4 Shear stress versus wall thickness curves from 20 wt% hollow
Fe3O4 MR fluids with different diameters. The abscissa in (a) real units
and (b) dimensionless units. (c) Magnetic potential energy per particle,
(d) number of neighbors per particle, (e) peak value of radial distribution
function, and (f) sx* versus dimensionless wall thickness.
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H = 30 nm, the particle aggregates became monolayered. For
H = 60 nm hollow microspheres, the lamellar microstructures
transferred into separated cluster microstructures. Each part
exhibited different inclined angles but still located in several
separated planes. When the wall thickness further increased,
particle chains tended to align vertically and the aggregation
along the y-axis became weaker. For solid microspheres, some
nearby cluster microstructures were even located in different
planes. Microspheres with larger wall thickness had a stronger
magnetic interaction. Therefore, the microstructure would not
be easily destroyed or driven by shear flow. The stability of the
microstructures caused a poor quality in the orientation of the
particle clusters.

B. For a concentrated MR fluid. In order to achieve
a higher MR effect, MR fluids with higher weight fraction
(E40 wt%) are usually adopted in applications. In a hollow
sphere system, the apparent volume fraction must satisfy the
closest packing ja o 74%. It was reported in the literature that
concentrated MR fluids could also exhibit a shear thickening
phenomenon under a certain magnetic field and a certain
shear rate.42 Squeeze and friction among hollow microspheres
exhibited a great influence on the shear stress when ja 4 50%.
Without the consideration of the friction force, eqn (11) would
lead to an inaccuracy in simulations. The wall thickness was set
from H = 0.06D to H = 0.5D, while the corresponding ja was set
from 11.5% to 36.2% to avoid the aforementioned problem. In
a 40 wt% MR fluid, the shear stress exhibited similar character-
istics to a 20 wt% MR fluid (Fig. S8, ESI†). In Fig. 6a, the shear
stress reached the maximum approximately when H = 0.4D. The
peak value from each curve was approximately double that of a
20 wt% MR fluid compared to Fig. 4b. All the curves also
collapsed onto a quadratic master curve, which was expressed
as t = �1500(H/D � 0.35)2 + 186.5. The optimal wall thickness
decreased to H = 0.35D, while the optimal diameter was
D = 100 nm. |Um|/N increased along with the wall thickness
(Fig. 6b). Interestingly, although the volume fraction of a
40 wt% MR fluid was higher, the |Um|/N was slightly lower

than a 20 wt% MR fluid. The intensity of the magnetic
interaction per particle in concentrated MR fluid was unusually
weakened. In Fig. 6c, Nnear versus H/D curves still collapsed onto
an exponential decayed master curve. The Nnear values of the
curves were approximately double those in a 20 wt% MR fluid.
The declination speed of Nnear in the concentrated MR fluid
was slower than that in the diluted MR fluid. In Fig. 6d, the
maximum value of the G(r)max curves appeared at H = 0.4D. In a
concentrated MR fluid, the microspheres form thick lamellar
microstructures and the distance between lamellae is smaller
than the truncation radius. In order to analyze the orientation
of particle chains, the azimuth should be taken into account.
sx* fluctuates around the average value without an obvious
trend, which is not plotted here. In summary, the high shear
stress of D = 100 nm hollow microspheres could be attributed
to the van der Waals force. If the diameter further decreased,
the Brownian motion would disturb the particle aggregation.
Smaller nanosphere would not exhibit a larger shear stress,
which has been proved in the literature.33 When H r 0.3D, the
main influencing factors on shear stress were the dramatically
changed |Um|/N and Nnear. When the wall thickness drew close
to H = 0.5D, the above factors reached a plateau. The decrease
in G(r)max led to a slight drop in shear stress. The peaks in the
shear stress curves were the result of competition among
the magnetic forces, number of neighbors, and tightness of
the microstructures.

Microstructures of a 40 wt% MR fluid based on micro-
spheres with D = 300 nm and different wall thicknesses are
shown in Fig. 7. If the wall thickness reached H = 0.033D,
corresponding to the apparent volume fraction 61.7%, hollow
microspheres always contact each other. No obvious micro-
structures could be identified from the snapshot. This situation
is not shown in Fig. 6. The lamellar microstructures became
thinner as the wall thickness became larger. When H Z 0.3D,
defects occurred in the lamellae. This phenomenon decreased
the tightness of the particle aggregates thus further reducing
the G(r)max (Fig. 6d).

Fig. 5 Snapshots of 20 wt% MR fluids based on microspheres with different wall thicknesses. (a) Top view, (b) perspective view.
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Mason number

In this section, the Mason number is determined for the hollow
Fe3O4 microsphere suspension. This dimensionless number
can produce a collapse of viscosity data at various magnetic
field strengths and shear rates. Klingenberg et al. defined the
Mason number for MR fluid as the ratio of hydrodynamic drag
force and magnetic polarization force.43

Mn ¼
FH

FM
(24)

FH ¼ 3

2
pZdi2ch _g

FM ¼ 3m0mcmi
2

4pdi4

8>>><
>>>:

(25)

where the relative magnetic permeability of the continuum
matrix mc E 1. The magnetic moment mi is expressed as
mi = VhMsphi = pdi

3hMsphi/6 = pdi
3MS/6, where hMsphi = hMi/

ja. hMi is the magnetization of the suspension. In this way, Mn

included the magnetization of microspheres both at low and
high field values. When the particle diameter and wall thick-
ness were changed, hMi and the weight fraction of Fe3O4

remained unchanged. By inserting the expression of mi into
eqn (25), Mn is finally expressed as:44

Mn ¼
72Zch _g
m0M2S2

(26)

where M is the magnetization of Fe3O4 in eqn (1). Each para-
meter in eqn (26) can be determined from experiments or
simulations. The mason number defined in this way allows the
influence of the matrix viscosity, shear rate, external field, and
particle architecture to be described by using only one dimen-
sionless number. The simulation results Zapp/ZN = f (Mn) for all
kinds of microspheres and different weight fractions collapse
onto a single master curve (Fig. 8). The slop of the master curve
in a log–log coordinate is �0.59. Here ZN is obtained from
D = 300 nm, H = 60 nm hollow Fe3O4 microspheres. It is assumed
that solid proportion S doesn’t significantly influence the ZN
under the same weight fraction. For most ranges of S, the
viscosity monotonously decreased with Mason number. Some
deviations appear only when the wall thickness is close to
H = 0.5D. This phenomenon could be attributed to the increasing
defects in the microstructures. A similar collapse of viscosity data
was also observed in the literature.44 It is significant that the
nonlinear magnetization in this article originates from the different
physical characteristics of magnetic particles instead of the change
of magnetic field strengths.

Experimental results

Typical TEM images of hollow Fe3O4 particles (Fig. 9a) showed
that the microspheres were spherical and monodispersed.

Fig. 6 (a) Shear stress versus dimensionless wall thickness curves from
40 wt% hollow Fe3O4 MR fluids with different diameters (inset: the peak
value of each curve). (b) Magnetic potential energy per particle, (c) number
of neighbors per particle, and (d) peak value of the radial distribution
function as a function of dimensionless wall thickness.

Fig. 7 Snapshots of a 40 wt% MR fluid based on microspheres with different wall thicknesses. (a) Top view, (b) perspective view.
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The hollow feature was obvious in each particle. The diameter
was estimated to be 300 nm while the wall thickness was
approximately 60 nm (Fig. 9b). Fig. 9c shows the magnetic
hysteresis loop of hollow Fe3O4 samples. The microspheres
presented excellent super-paramagnetic properties with a
saturation magnetization of 71 emu g�1 and zero residual

magnetism and coercive force. The fitting curve of eqn (1) was very
close to the experimental results (inset graph), of which the R-
square was 0.9998. Fig. 9d shows the shear stress of a MR fluid as a
function of magnetic flux density. The magneto-induced shear
stress firstly increased along with the external field and then
reached a plateau after 0.4 T, which was similar to the hysteresis
loop in the first quadrant. Typically, the shear stress curves of a
20 wt% MR fluid based on water and silicone oil in the magnetic
field sweep agreed well with the simulation results. However, the
simulations slightly overestimated the shear stress of the MR fluid
based on silicone oil while disappreciated the shear stress of the
MR fluid based on water. This was because the MR fluid formed
some large-scale anisotropic microstructures. Such microstructures
were not reflected in the simulation due to the restriction of the
calculation scale. Further work should be done to improve the
accuracy of the simulations. Shear stress as a function of shear rate
for a 20 wt% MR fluid at various magnetic flux densities is shown
in Fig. 9e. The MR fluid possessed a static yield stress when the
shear rate was _g- 0. The shear stress firstly showed a rapid growth
and then a linear growth versus shear rate. The samples exhibited
typical characteristics of Bingham fluids at a high shear rate. The
flow curves can be described as:

t = t0 + Zp _g (27)

where t0 stands for the dynamic yield stress and Zp represents
the plastic viscosity. This parameter can be obtained from the
linear fitting of flow curves at high shear rates. The t0 values
under a magnetic field of 0.11 T, 0.22 T, 0.44 T, and 0.88 T were
46.9 Pa, 64.7 Pa, 68.7 Pa, and 69.3 Pa, respectively. Simulations
of the MR fluid at a shear rate from 40 s�1 to 100 s�1 in a 0.88 T
magnetic field were carried out to compare with experiments.
The simulated dynamic yield stress t0 = 71.3 Pa was very close
to experiments, the dash line in Fig. 9e. The dimensionless
viscosity could be expressed as:

Zapp
Z1
¼

Zp
Z1
þ ty
Z1 _g

(28)

At a very high shear rate in the absence of a magnetic field,
Zp = ZN. According to eqn (26), the apparent viscosity yields:45

Zapp
Z1
¼ 1þ Bn ¼ 1þMn

�Mn
�1 (29)

Here, Bn = ty/ZN _g is the Bingham number and Bn p Mn
�1.

Dimensionless viscosity from experiments and simulations
as a function of Mason number collapsed onto a single master
curve, as shown in Fig. 9f. Mn* = 2 � 10�3 was obtained
from the fitting curve. Some deviations from the fitting curve
originated from the assumption that Zp = ZN. The influence of
Zp was obvious only under large Mason numbers. Based on the
above results, the present simulations coincided well with
experiments.

Conclusions

In this work, a particle level dynamic simulation was carried
out to investigate the influence of particle diameter, wall

Fig. 8 Dimensionless viscosity as a function of Mason number for hollow
Fe3O4 microspheres with different diameters, wall thicknesses, and weight
fractions.

Fig. 9 (a and b) TEM images of hollow Fe3O4 microspheres. (c) Magnetic
hysteresis loops of particles. (Inset: fitting results of hysteresis loops
between 0 and 10 kOe.) (d) Shear stress as a function of magnetic flux
density of an MR fluid based on the hollow Fe3O4 microspheres. Solid
symbols: experiments, open symbols: simulations. (e) Flow curves of MR
fluids in different external magnetic fields. Open symbols stand for simula-
tion results. Solid and dashed line represents the prediction of dynamic
yield stress from experiments and simulations, respectively. (f) Dimension-
less viscosity versus Mason number for various magnetic fields.
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thickness, and weight fraction on the MR effect of hollow
magnetic microspheres. An accurate model of dipolar force,
van der Waals force, and hydrodynamic drag force was adopted
to obtain accurate results. The microstructures of the MR fluid
were analyzed both qualitatively and quantitatively. Shear stress
tests in magnetic field sweep and shear rate sweep confirmed
the accuracy of the simulation.

In the typical steady shear flow, the sharp drop in magnetic
energy reflected the aggregation along the field direction.
The linear growth and fluctuant growth region in the shear
stress–strain curves were corresponding to the inclination of
particle chains and the aggregation along the y-axis, respec-
tively. Hollow microspheres evolved from a uniform distribu-
tion to chain-like microstructures. Finally, particle chains
inclined and formed clusters located in several separated
planes, which led to the homeostasis of shear stress. The
tightness of microstructures kept growing during the three
steps of aggregations. Cluster microstructures tended to incline
at an angle between 0 and 301 as the system reached homeo-
stasis. Microspheres in horizontal alignment significantly
decreased at the same time.

For hollow Fe3O4 microspheres with different diameters
and wall thicknesses in a 20 wt% MR fluid, all the shear
stress curves presented a quadratic relationship with H/D.
The optimal wall thickness obtained from the master curve
was H = 0.39D, while the optimal diameter was D = 1000 nm.
The growing magnetic interaction promoted shear stress while
the reducing number of neighbors per particle hindered shear
stress by increasing the wall thickness. If the wall thickness was
H Z 0.3D, the above factors reached a plateau. The radial
distribution function and orientation of particle chains became
the dominant factors in shear stress. Hollow microspheres
transformed from thick lamellar microstructures to mono-
layered lamellar microstructures and finally formed separated
clusters by increasing the wall thickness. Simulation results
from a 40 wt% MR fluid exhibited similar characteristics. The
optimal wall thickness obtained from the master curve was
H = 0.35D. The optimal diameter was D = 100 nm. For D =
100 nm microspheres, the van der Waals force made a great
contribution to shear stress. The maximum shear stress of a
40 wt% MR fluid was double that of a 20 wt% MR fluid. The
simulated viscosity data versus Mason number for micro-
spheres with different diameters, wall thicknesses, and weight
fractions collapsed onto a single master curve. This dimension-
less number was proven to be valuable for describing MR fluids
with different physical characteristics.
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