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In this paper, a magneto-rheological (MR) damper-based semi-active controller for vehicle suspension
is developed. This system consists of a linear quadratic Gauss (LQG) controller as the system controller
and an adaptive neuro-fuzzy inference system (ANFIS) inverse model as the damper controller. First,
a modified Bouc–Wen model is proposed to characterise the forward dynamic characteristics of the
MR damper based on the experimental data. Then, an inverse MR damper model is built using ANFIS
technique to determine the input current so as to gain the desired damping force. Finally, a quarter-car
suspension model together with the MR damper is set up, and a semi-active controller composed of
the LQG controller and the ANFIS inverse model is designed. Simulation results demonstrate that the
desired force can be accurately tracked using the ANFIS technique and the semi-active controller can
achieve competitive performance as that of active suspension.

Keywords: MR damper;ANFIS inverse model; semi-active control; LQG control; vehicle suspension

1. Introduction

In modern vehicles, vehicle suspension plays an important role in improving the ride com-
fort, road holding and suspension deflection. There are three types of vehicle suspensions,
namely passive, semi-active and active suspensions. The commonly used passive suspension
featuring an oil damper provides design simplicity and cost-effectiveness in practical appli-
cation. However, due to the lack of damping force controllability, its performance is limited.
The active suspension using separate actuators which can exert an independent force provides
high control performance in a wide frequency range. Unfortunately, the cost and complexity
of this system prohibit its commercial applications. To solve these problems, researches on
vibration control using semi-active suspensions have increased significantly since semi-active
suspensions can provide performance benefits over passive suspensions and without requiring
large power sources and expensive hardware relative to active suspensions.
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1026 L.-H. Zong et al.

Recently, the semi-active suspension based on magneto-rheological (MR) damper has
attracted more attention [1–7] because of its fast response characteristic to magnetic fields,
insensitivity to temperature fluctuations or impurities in the fluid, obtainment of convenient
power and wide control bandwidth. The damping force generated by the MR damper cannot be
controlled directly because it depends on the input current to the MR damper and the relative
velocity and displacement between the piston and the damper shell, among which only the
input current can be controlled. Therefore, the designation of the damper controller is still one
of the important issues in the application of a MR damper. Basically, there are three major
approaches have been utilised in designing of a controller for the MR damper in literatures. The
first method is based on the force feedback control by a force sensor. Dyke et al. [8] proposed
the clipped-optimal controller firstly. The command current (voltage) varies between two states
according to the comparison of the desired force and the actual force. Yoshida et al. [9] added
a function in the clipped-optimal switching, which can control the current between zero and
the maximum value. The second approach is focused on the inverse MR damper model, which
is a numerical model to calculate the MR damper’s required control current (voltage) based on
a known control force. The third approach is based on the fuzzy controller design methodol-
ogy, which has been conducted recently by many researchers [10,11]. Among them, the force
feedback control-based method is the simplest, but the MR damper can only approximately
generate the desired optimal control force, because the command current (voltage) is not pre-
cisely calculated and an extra force sensor is needed which will increase the complicacy and
the cost. The fuzzy controller design methodology does not need the accurate models of the
control object or the MR damper, but it is very challenging to establish reasonable fuzzy rules
because no systematic method can be adopted. Compared with the force feedback control
method and the fuzzy controller design method, the inverse MR damper model-based method
has two main advantages: one is more precise command current (voltage) can be calculated
to track the desired force, the other is no force sensor is needed.

During the actual application, when utilising the inverse model-based method, the MR
damper works via a two-step progress. Firstly, a system controller determines the desired
damping force of the MR damper according to the structure responses; then a damper controller
adjusts the command current applied to the MR damper to track the desired damping force.
The damper controller is usually named as the inverse model of the MR damper. Thus, the
successful application of the MR damper is determined practically by two aspects: one is the
accurate inverse model of the MR damper to generate the command current and the other is
the selection of an appropriate control strategy.

To overcome the difficulties in building the inverse model due to the inherent hysteresis and
strong nonlinearity of the MR damper, several inverse dynamic models for MR dampers to
gain the command current have been proposed. Generally speaking, they can be categorised
as nonparametric and parametric models. For parametric models, Wang et al. [12] proposed
a hysteretic force-velocity model based on the symmetric and asymmetric sigmoid functions,
with attractive features of decoupling the current control gain function and the hysteron func-
tion. Sakai et al. [13] proposed a modified LuGre model, whose inverse dynamic model can
analytically determine the necessary input current. The phenomenological model [14] can
accurately describe the forward behaviour of the MR dampers. However, the corresponding
inverse model is difficult to obtain due to its nonlinearity and complexity. Tsang et al. [15]
developed a simplified inverse dynamics model for the phenomenological model using the
exponential function to emulate the controllable force. For non-parametric models, Choi et al.
[16] developed a polynomial model, which can easily calculate the input current with measur-
able velocity and has been used in several semi-active control systems [4,17]. Liao et al. [18]
proposed a direct identification and an inverse dynamic modeling method for MR dampers
using recurrent neural networks. Wang et al. [19] designed a kind of nuero-fuzzy system on
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Vehicle System Dynamics 1027

the basis of adaptive neuro-fuzzy inference system (ANFIS) technology to build the inverse
model. Among them the polynomial model has been technically applied in the semi-active
control systems. However, the effectiveness is limited because it is not precise enough in
predicting the control current. The neural network model and the ANFIS model are relatively
more accurate in predicting the command current of the MR dampers. When identifying the
inverse model of MR damper with ANFIS, there may exist a curse of dimensionality of fuzzy
system, which will dramatically increase time consumption for training, and even the inverse
model may not be identifiable. So it is crucial to design a suitable architecture for the ANFIS
model. In addition, the use of the ANFIS inverse model to generate the command current in
semi-active control for vehicle suspension has not been reported.

In this paper, a semi-active controller composed of a linear quadratic Gauss (LQG) controller
and an ANFIS inverse model is designed for vehicle suspension with an MR damper. First,
a phenomenological model (modified Bouc–Wen model) is built to characterise the forward
dynamic characteristics of the MR damper based on the experimental data. Then, an inverse
MR damper model is built with the ANFIS technique to determine the input current so as
to gain the desired damping force. Further, a quarter-car suspension model is constructed
assembling with a MR damper and a semi-active controller is designed, which consists of a
LQG controller to generate the active force and anANFIS inverse model to adjust the command
current. Finally, the simulation studies are carried out and the results are analysed.

2. The modified Bouc–Wen model of the MR damper

The prototype MR damper used in this study was designed and manufactured by our group [20]
(Figure 1). The damper has a ±35 mm stroke with 420 mm length in its extended position and
350 mm length in its compressed position. The maximum input current to the electromagnet
is 2.5A. The time delay of the MR damper is 10 ms.

The MTS809 TestStar Material Testing System is used to test the MR damper. In each
test, the excitation is a sinusoidally varying displacement of a fixed frequency and constant
amplitude. The input current to the MR damper is maintained at a constant level. The excitation
frequencies are 0.5, 1, 1.5 and 2 Hz and the displacement amplitudes are 10 and 15 mm,
respectively. The applied input current are from 0 to 2.5A with increment of 0.5A. The
damping force and displacement are measured and fed to a personal computer. The velocity
is obtained by differentiating the displacement.

The phenomenological model, which is proposed by Spencer et al. [14], can accurately
predict the behaviour of the MR damper over a broad range of inputs. The simple mechanical

Figure 1. Photograph of the MR damper.
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1028 L.-H. Zong et al.

Figure 2. The phenomenological model for the MR damper.

model of the MR damper is shown in Figure 2. It consists of mechanical elements such as
springs, dashpots and hysteresis loop to emulate the device behaviour.

Here, a modified Bouc–Wen model is developed based on the phenomenological model.
The model is described by the following six nonlinear differential equations:

F = c1ẏ + k1(x − x0) (1)

ẏ = 1

c0 + c1
[αz + c0ẋ + k0(x − y)] (2)

ż = −γ |ẋ − ẏ|z|z|n−1 − β(ẋ − ẏ)|z|n + A(ẋ − ẏ), (3)

where F is the damping force, c1 represents the viscous damping at low velocities, c0 represents
the viscous damping at high velocities, k0 represents the stiffness at high velocities, k1 is the
accumulator stiffness; x is the piston relative displacement, x0 is the initial deflection of the
accumulator gas spring, y is the internal displacement of the damper and z is the evolutionary
variable; α is a scaling value for the Bouc–Wen model, γ , β, A and n are parameters used to
adjust the scale and shape of the hysteresis loop, respectively.

The parameters γ , β, A, n and k1 are considered fixed and the parameters c0, c1 and α are
assumed to be a function of the applied current I .

α = αa + αbI , (4)

c0 = c0a + c0bI , (5)

c1 = c1a + c1bI . (6)

The 13 parameters c0a, c0b, c1a, c1b, αa, αb, k0, k1, x0, γ , β, A and n of every single input
current are estimated at an excitation having a frequency of 2 Hz and an amplitude of 10 mm
on the basis of minimising the error between the model predicted force (Fp) and the force
obtained in the experiment (Fe) over one complete cycle. The error in the model is represented
by the objective function Et given by

Et = ξt

σF
, (7)
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Vehicle System Dynamics 1029

Table 1. Parameter values of MR damper model.

Parameter Values Parameter Values

c0a 0.977 N s/mm k1 0.134 N/mm
c0b 0 N s/mm/A x0 114.93 mm
c1a 8.168 N s/mm β 0.07 mm−2

c1b 2.725 N s/mm/A A 300
αa 0 N/mm γ 0.07 mm−2

αb 1.723 N/mm/A n 2
k0 1.072 × 10−2 N/m – –

where

ξ 2
t =

∫ T

0
(Fexp − Fpre)

2 dt (8)

σ 2
F =

∫ T

0
(Fexp − μF)2 dt, (9)

where μF is the average value of the force obtained in experiment (Fe) over one complete
cycle. Optimum values of the 13 parameters have been obtained using Genetic Algorithm
(GA) tool available in MATLAB® Toolboxes. The optimum values are listed in Table 1.

In order to validate the obtained modified Bouc–Wen model, the measured damping force
and the predicted damping force are compared (Figure 3), where the excitation frequency and
amplitude are 2 Hz and ±10 mm, respectively. The error between the measured force and the
predicted force under various applied input currents, represented by the objective function Et ,
are also listed in Figure 3(b). It is clearly observed that the damping force predicted by the
modified Bouc–Wen model agrees well with the experiment force. It can also be seen that the
accuracy in large current is better than that in small current.

3. ANFIS inverse model

The damping force generated by the MR damper is mainly decided by the input current,
the piston relative velocity and the piston relative displacement. Only the input current can be
directly controlled to operate the MR damper. Therefore, it is important to obtain the command
current according to the desired force in actual use. In this section, ANFIS technique is applied
to build the inverse MR damper model, because of its universal approximation ability to
nonlinear system [21].

3.1. ANFIS architecture

As an example, the architecture of a two-input two-rule ANFIS is discussed (Figure 4). The
ANFIS has five layers [21], in which the node functions in the same layer are of the same
function family as described below: (Note that Oij denotes the output of the ith node in the jth
layer).

• Layer 1: Every node i in this layer is an square node with a note output defined by

O1,i = μAi(x), i = 1, 2 (10)

or

O1,i = μBi−2(y), i = 3, 4,
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1030 L.-H. Zong et al.

Figure 3. Comparison between the modified Bouc–Wen model and experimental results (2 Hz, ±10 mm): (a) force
vs. displacement; (b) force vs. velocity.

where x (or y) is the input to node i and Ai (or Bi−2) is the linguistic label (small, large,
etc.) associated with this node. Here, a bell-shape function with maximum equal to 1 and
minimum equal to 0 is chosen, such as

μAi(x) = 1

1 + ((x − ci)/ai)2bi
, (11)

where {ai, bi, ci} is the parameter set which can be changed to adjust the bell-shape function.
• Layer 2: Every node in this layer is a circle node labelled π , which multiplies the incoming

signals and outputs the T-norm operator result, e.g.

O2,i = wi = μAi(x) × μBi(y), i = 1, 2. (12)

Each output node represents the firing strength of a rule.
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Vehicle System Dynamics 1031

Figure 4. The architecture of a two-input two-rule ANFIS.

• Layer 3: Every node in this layer is a circle node labelled N . The ith node calculates the
ratio of the ith rule’s firing strength to the sum of all rules’ firing strengths

O3,i = w̄i = wi

w1 + w2
, i = 1, 2. (13)

Outputs are called normalised firing strengths.
• Layer 4: Every node i in this layer is a square node with a node function:

O4,i = w̄ifi = w̄i(pix + qiy + ri), i = 1, 2, (14)

where w̄i is the output of layer 3 and {pi, qi, ri} is the parameter set. Parameters in this layer
will be referred to as consequent parameters.

• Layer 5: The single node in this layer is labelled �, which computes the overall output as
the summation of incoming signals, i.e.

O5,1 =
2∑

i=1

w̄ifi =
∑2

i=1 wifi∑2
i=1 wi

. (15)

3.2. Training inverse model

Given input/output data sets,ANFIS constructs a fuzzy inference system (FIS) whose member-
ship function parameters are adjusted using a hybrid algorithm. Generally speaking, the more
the inputs are, the more accurate the inverse model is. However, with increase in the inputs, the
inverse model will become very complex and the training time will increase enormously. To
balance the model accuracy and time consumption, the inputs of the inverse model are chosen
as current displacement, current velocity, previous velocity, current desired damping force and
previous desired damping force, while the output is the current command current. Figure 5
shows the scheme of the ANFIS for modelling the inverse dynamics of the MR damper. The
displacement input is a Gaussian white noise signal with a frequency between 0 and 13 Hz
and an amplitude ±20 mm. The command current input is generated by Gaussian white noise
ranging from 0 to 3A with a frequency of 0–6 Hz. (The purpose of choosing the maximum
current as 3A is to gain a better training result at large current around 2.5A). The desired
damping force is produced by the modified Bouc–Wen model, which is built in Section 2,
according to the displacement and command current inputs. The data are collected for 20 s
and sampled at 1000 Hz, therefore 20,000 points of data are generated. The first 10,000 points
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1032 L.-H. Zong et al.

Figure 5. The scheme of the ANFIS for modeling the inverse dynamics of the MR damper.

of data are chosen to be the training data, while the later 10,000 points of data are used as
checking data.

3.3. Validation of inverse model

In order to validate the inverse dynamic nuero-fuzzy model, three validation data sets are
discussed. The first and the second validation cases are the training data and the checking
data, respectively. The third validation case is the use of the ANFIS model in semi-active
control for vehicle suspension system, which will be discussed in the following section. The
validation flowchart of the first two cases is shown in Figure 6. Firstly, the target current,
displacement and velocity are inputted to the Phenomenon model_1 to generate the target
force. Then the target force, displacement and velocity are inputted to theANFIS inverse model
to generate the predicted current, and the predicted current and target current are compared in
the time domain. Finally, the predicted current, displacement and velocity are inputted to the
Phenomenon model_2 to generate the predicted force, and carry out the comparison between
the predicted force and target force in the time domain.

The training data validation case is shown in Figure 7. It can be found that the predicted
command current can track the target command current reasonably well from Figure 7(a), and
the damping force produced by the predicted command current coincides with the damping
force produced by the target command current from Figure 7(b).

Figure 6. The validation flowchart of the ANFIS inverse model.
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Vehicle System Dynamics 1033

Figure 7. Validation of the ANFIS inverse model of the MR damper for training data: (a) the command current
predicted by the ANFIS model and (b) the force predicted from the command current.

Figure 8. Validation of the ANFIS inverse model of the MR damper for checking data: (a) the command current
predicted by the ANFIS model and (b) the force predicted from the command current.

The checking data validation case is shown in Figure 8. From Figure 8(a), it can be found
that the accuracy of checking data is not as good as that of training data. Fortunately, it can
be seen from Figure 8(b) that the damping force generated by the predicted command current
can well track the damping force generated by the target command current. This can satisfy
the needs for the inverse model of MR damper because the inverse model is mainly used to
control the damping force of the MR damper.
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1034 L.-H. Zong et al.

4. Semi-active control of vehicle suspension system

4.1. Vehicle suspension model

A simple quarter-car suspension model that consists of one-fourth of the car body mass,
suspension components and one wheel is studied in this work (Figure 9). The equations of
motion for the sprung mass (car body mass) and unsprung mass (wheel mass) of the quarter-car
suspension model are given by

mbẍb + ks(xb − xw) = U(t),

mwẍw + ks(xw − xb) + kt(xw − xg) = −U(t),
(16)

where mb is the sprung mass, which represents the car body; mw is the unsprung mass, which
represents the wheel assembly; ks is the stiffness of the uncontrolled suspension system; kt is
the stiffness of the pneumatic tyre; xb(t) and xw(t) are the displacements of the sprung mass
and unsprung mass, respectively; xg(t) is the road displacement input; U(t) represents the
external input force of the suspension system, which is generated by means of a MR damper
for semi-active control.

The road irregularity input is a filtering white noise, which is governed by

ẋg = −2π f0xg + 2π
√

G0U0ω(t), (17)

where f0 is the low cut-off frequency, G0 is the road irregularity coefficient, U0 represents the
car velocity and ω(t) is the Gauss white noise. Define the state variables as

X = (ẋb, ẋw, xb, xw, xg)
T. (18)

Equations (16) and (17) can be written in state–space form as

Ẋ = AX + BU + Fω(t), (19)

Figure 9. Quarter-car suspension model.
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Vehicle System Dynamics 1035

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
−ks

mb

ks

mb
0

0 0
ks

mw

−(ks + kt)

mw

kt

mw
1 0 0 0 0
0 1 0 0 0
0 0 0 0 −2π f0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

mb

− 1

mw
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, F =

⎡
⎢⎢⎢⎢⎣

0
0
0
0

2π
√

G0U0

⎤
⎥⎥⎥⎥⎦ .

4.2. Formulation of LQG controller

The optimal linear quadratic regulator (LQR) in combination with Kalman filter-based state
estimation, leading to LQG optimal control, is used to calculate the optimal control force
in real time. Ride comfort, road-holding ability and suspension deflection are the three main
performance criteria in vehicle suspension design. Ride comfort is closely related to the vertical
acceleration of the car body. In order to improve the three performance criteria and limit the
magnitude of the control force, an LQR control problem is formulated. The performance
function J is defined as follows:

J = lim
x→∞

1

T

∫ T

0
[q1(xw − xg)

2 + q2(xb − xw)2 + ẍ2
b + rU] dt, (20)

where q1, q2 and r represent the weighting coefficients of road holding ability, suspension
deflection and control force, respectively. The coefficient of the ride comfort is set to 1.

Rewrite the target performance evaluation function as

J = lim
x→∞

1

T

∫ T

0
(XTQX + UTRU + 2XTNU) dt, (21)

where

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0

0 0
k2

s

m2
b

+ q2 − k2
s

m2
b

− q2 0

0 0 − k2
s

m2
b

− q2
k2

s

m2
b

+ q1 + q2 −q1

0 0 0 −q1 q1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

− ks

m2
b

ks

m2
b

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, R = 1

m2
b

+ r,

where Q is the weighting matrix of state variables, R the weighting matrix of control variables
and N the weighting matrix of the cross term of state variables and control variables.

The solution to the optimal control problem that minimises this given performance index
is a state feedback law U = −GX , where the feedback gain G is determined by solving the
following Riccati equation:

AP + PAT − PBR−1BTP + Q = 0, (22)

G = R−1(NT + BTP). (23)
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1036 L.-H. Zong et al.

Considering practical application, only the suspension deflection xb(t) − xw(t) and the
acceleration of sprung mass ẍb(t) can be easily measured. But all of the state variables
are needed in the LQR controller. So it is necessary to estimate all of the state variables
from the measurable signals using Kalman filter-based state estimation. For this purpose, the
performance function of the Kalman filter is defined as follows:

Je = lim
x→∞

1

T

∫ T

0
[{X(t) − X̂(t)}T{X(t) − X̂(t)}] dt, (24)

where X̂(t) is the estimation of the state X(t). The Kalman filter is represented as follows:

˙̂X = AX̂ + BU + Ke(Y − Ŷ), X̂(t0) = X̂0,

Ŷ = C0X̂ ,
(25)

where Ke is the gain of Kalman filter, which is determined by solving the following Riccati
equation:

APe + PeAT − PeCT
0 R−1

e C0Pe + Qe = 0, (26)

Ke = PeCT
0 R−1

e , (27)

where Qe = qe, Re = re × eye(2, 2), eye(2,2) is a 2 × 2 unit matrix.
Finally, the optimal control force of the system can be expressed as the feedback of the state

estimation

U(t) = −GX̂(t). (28)

4.3. Semi-active control system

Because the MR damper is a semi-active device, there are two intrinsic constraints due to the
characteristics of the MR dampers: the passivity constraint and the limitation constraint. In
active control, forces can be produced in any of the four quadrants in the force–velocity graph,
while semi-active devices can only produce forces in the first and third quadrants because of
the passivity constraint. In other words, only when the active control force has the same sign
to that of the MR damper’s piston relative velocity, it can be produced by the MR damper.
In addition to the passivity constraint, there is an upper limit and a lower limit on the force
that the MR damper can produce at every moment (Figure 10), due to the actual constraint
of the input current to the MR damper. In summary, only if the active control force satisfies
the above two constraints, the MR damper can generate corresponding force by adjusting the
input current. Otherwise, the desired damping force is either of the lower or upper level by
setting the input current at either zero or the maximum achievable level, respectively. So a
force limiter is designed to calculate the desired damping force according to the active control
force and the suspension velocity, which is governed by

Fdesired =

⎧⎪⎨
⎪⎩

Fmax, Factive ≥ Fmax,

Factive, Fmax > Factive > Fmin,

Fmin, Factive ≤ Fmin,

(29)
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Vehicle System Dynamics 1037

Figure 10. The scheme of controllable force.

where Fmax is the maximum force that the MR damper can generate at present moment, Fmin

the minimum force that the MR damper can generate at present moment, Factive the active
control force calculated by the active control algorithm and Fdesired the desired damping force
that the MR damper can track.

The semi-active control system consists of a system controller and a damper controller. The
system controller generates the desired damping force according to the dynamic responses
of the suspension while the damper controller adjusts the input current to track the desired
damping force. In this paper, the semi-active controller is composed of a LQG controller
(system controller) and anANFIS inverse model (damper controller). The structure of the semi-
active controller for vehicle suspension with an MR damper is depicted in Figure 11. Firstly,
the active control force is calculated by the LQG controller according to the measured outputs.
Then, the desired damping force is generated by the force limiter based on the active control
force. Thirdly, the ANFIS inverse model of the MR damper is used to adjust the command
current according to the desired damping force and the vehicle suspension responses. Finally,
the desired damping force is approximately realised by the MR damper with an appropriate
input current calculated from the ANFIS inverse model.

Figure 11. The structure of the semi-active controller for vehicle suspension with the MR damper.
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1038 L.-H. Zong et al.

4.4. Simulation results

In order to evaluate the performance of the semi-active controller with MR damper, three
types of suspensions, namely passive, active and semi-active suspension, are studied in this
work. Passive suspension means that the control input current to the MR damper I(t) = 0A
for all time, namely the passive damping is equal to 977 Ns/m. Active suspension means
that the control input U(t) is fully realised by Equation (28). Semi-active suspension means
that the control input U(t) is realised by the MR damper with the control structure in
Figure 11.

The simulation parameter values are listed in Table 2. The total simulation time is 20 s, and
the time step is 1 ms. The response time of the MR damper is 10 ms. The input current of the
MR damper is restricted within 0 ∼ 2.5A.

The random road excitation, the responses of the suspension system under random excitation
of passive, semi-active and active suspension, the damping force and the input current to
MR damper are shown in Figure 12. The displacement of the road excitation is shown in
Figure 12(a). The responses of the car body acceleration, the suspension deflection and the
tyre deflection are shown in Figure 12(b)–(d), respectively. Figure 12(e) shows the comparison
of the actual damping force, the desired damping force and the active force. Figure 12(f) shows
the input current to the MR damper of the semi-active suspension.

From Figure 12(b)–(d), it can be seen that both active and semi-active suspension systems
can achieve relatively lower magnitude for car body acceleration, suspension deflection and
tyre deflection when compared with the passive suspension system. Using the presented control
structure (Figure 11), the semi-active suspension system together with the MR damper can
achieve a control performance that is similar to that of the active suspension system except
for a little deterioration because of the passivity and the limitation constraints (Figure 12(e)
and 12(f)). It demonstrates the effectiveness of the semi-active controller with MR damper for
vibration suppression of the suspension system.

From Figure 12(e), it can be found that the actual damping force generated by the MR
damper can track the desired damping force well, which further demonstrates that the ANFIS
inverse model of the MR damper is effective in controlling the damping force.

The root-mean-square (RMS) values and the peak-to-peak values of the responses are
presented in Table 3. It can be seen that the active and semi-active suspension systems have
good performance in car body acceleration, suspension deflection and tyre deflection than that
of passive suspension system. The semi-active suspension system with the MR damper has a
little deterioration of control performance in car body acceleration and tyre deflection when

Table 2. The simulation parameters values.

Parameters Units Values

Vehicle suspension mb kg 360
mw kg 40
ks Ns/m 2.0 × 104

kt Ns/m 2.0 × 105

Road excitation f0 Hz 0.01
G0 m3/cycle 5.0 × 10−6

U0 m/s 20
LQR controller q1 – 5.0 × 104

q2 – 1.0 × 103

r – 1.0 × 10−6

Kalman filter qe – 10
re – 1.0 × 10−6
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Vehicle System Dynamics 1039

Figure 12. Suspension responses under random road excitation. (a) the displacement of the road excitation; (b) the
responses of the car body acceleration; (c) the responses of the suspension deflection; (d) the responses of the tyre
deflection; (e) comparison of the actual damping force, the desired damping force and the active force; (f) the input
current to MR damper of the semi-active suspension.
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1040 L.-H. Zong et al.

Table 3. RMS values and peak-to-peak values analysis.

RMS values Peak-to-peak values

Passive Active Semi-active Passive Active Semi-active

Car body acceleration (m/s2) 0.615 0.361 0.523 4.076 2.425 3.276
Suspension deflection (mm) 9.123 6.967 6.776 55.410 41.193 41.271
Tyre deflection (mm) 1.245 1.003 1.116 8.750 6.465 7.456

compared with that of active suspension system. But the control performance in suspension
deflection of semi-active suspension is similar to that of active suspension. All these results
indicate that the semi-active controller presented in this paper can work well under random
excitation.

5. Conclusions

In this paper, a semi-active controller based on the ANFIS technique for the MR damper
is proposed and applied to a quarter-car vehicle suspension. The LQG controller and the
ANFIS inverse model are used to generate the active force and adjust the command current,
respectively. First, a modified Bouc–Wen model is used to build the forward MR damper
model according to the experimental data. Then, ANFIS technique is applied to build the
inverse MR damper model. The architecture and the training method for the inverse model of
the MR damper are presented. Validation results show that the inverse model is effective in
controlling the damping force of the MR damper. Together with theANFIS inverse model of the
MR damper and a suitably designed LQG controller, a semi-active controller is proposed and
applied to a quarter-car suspension model. The performances of this controller are validated by
numerical simulations. Results show that the semi-active controller can achieve compatible
performance as that of active suspension controller except for a little deterioration. These
results presented in this paper are still preliminary for modelling and control of the MR damper
using ANFIS technique, more experimental research work is needed in order to further test
the controller.
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