

# Tritec 2000 动态热机械分析仪操作说明

仪器名称:动态热机械分析仪

仪器型号: Tritec 2000

## 仪器的基本性能:

动态热机械分析仪(Dynamic Mechanical Analyzer, DMA)是比较 成熟的粘弹性体动态力学测试系统。其原理属于强迫非共振法。它包 含有如拉伸、弯曲和剪切等多种形变模式。在每一种形变模式下,不 仅可以在固定频率下测定不同温度范围内的动态力学性能温度谱或 在固定温度下测定不同频率范围内的频率谱,而且还允许多种变量组 合在一起的复杂试验模式。

为了测试材料在磁场中的力学性能,实验室在英国 Triton Technology 公司的 Tritec 2000 DMA 基础上,对 DMA 进行了改进, 自研制配备了一个可调范围 0~1100mT 的磁场发生器,构成力磁耦 合 DMA。在该装置中,样品的一面与电磁线圈的铁芯相粘结,为应 变固定面;另一面与连接驱动轴的剪切片相粘结,为载荷面。通过施 加动态应变和磁场后,磁流变弹性体样品会在外加磁场下作剪切受迫 运动。



型号为 Tritec 2000 的动态热机械分析仪



操作说明:

1、启动仪器及安装样品:

打开电脑,打开 DMA 背后开关,打开桌面上的 DMA 软件 . 检查线圈铁芯的水平,如不水平则调节底座至水平。一般把 测试样品切割成 10mm×10mm×3mm 的形状,用胶水把样品的一面粘 在铁片上,另一面粘在铁芯中心处。然后装上夹头,拧上螺丝固定, 拧的时候要特别注意软件上显示的位移情况,使得 Displacement 中紫 色区域在中心附近,如图 1 所示,最终拧好后如图 2 所示。盖上盖子, 注意盖子上的缺口留给铁片通过,且不碰到铁片。

| 👜 Triton Technology DA          | AA Software    |        |
|---------------------------------|----------------|--------|
| <u>File T</u> ools <u>H</u> elp |                |        |
| X 🔨 🖓                           |                | STOP - |
| no active experiment            | Temp (C)       | 20.1 C |
| Geom. const.                    | Frequency (Hz) | 1.000  |
| Force                           |                |        |
|                                 | zero           |        |
| Displacement                    |                |        |

图 1





图 2

## 2、参数设置:

有两种方法可以选择

第一种是在 Oven selection 一栏选择 Standard Air Oven, 单击打开, 在 E 盘 DMA 实验数据文件夹中选择一个模板。

将测试样品尺寸填到如图3所示的表格内,同样将测试频率和应

变幅值等参数填到如图 4 所示表格内,单击 保存在一个新文件中。

| 7  |
|----|
| 2  |
| 3  |
| э, |

图 3



|              | discrete values |        |        |                                          |
|--------------|-----------------|--------|--------|------------------------------------------|
| Frequency    | 10.000          | 20.000 | 30.000 | 40.000                                   |
| Displacement | 0.010           | 0.000  |        | 2010 III III III III III III III III III |



第二种是在无模板的情况下,点击工具栏第二个按钮 Experiment wizard,.第一个出现的对话框为选择炉子类型。由于单面剪切模型不可使用炉子,所以实验中不必设置,此处选默认的 standard oven。接下来系统提示输入实验标题并选择实验类型图 5,根据需要选取。

| _                          | $\sim$          |
|----------------------------|-----------------|
| E <u>x</u> periment Litle: | (?`             |
|                            |                 |
| Experiment type            |                 |
| C <u>T</u> ime scan        |                 |
| C Temperature scan         |                 |
| C Erequency scan           |                 |
| C <u>S</u> train scan      |                 |
| C <u>C</u> reep / TMA      |                 |
| C Stress / Strain          | C <u>a</u> ncel |
| C Stress Relaxation        | Nevts           |

图 5

在测磁流变弹性体动态磁致性能时,最常用的是不同磁场段下的 频率扫描。在图 6 中需要设置频率扫描参数。开始频率最好不要太低, 否则开始时数据采集太慢,一般 1Hz 以上为宜;结束频率最大为 300Hz。根据需要输入每十赫兹采集数据点数,同时可选择频率段内 的取点形式,线性还是 log 方式。在此模式中,位移不可设的太大,



一般在 0.01-0.1mm 之间。还有关于温度状况的设置,将起始温度设成接近 DMA 显示屏上显示的温度值, soak time 要尽量长,必须足够做完实验。其他默认即可。接下来的对话框如图 7 所示为设置几何参数。左边变形模式选 shear,根据样品尺寸键入长宽厚度。

| <u>Start</u>               | Stop                         | Points per<br>decade |                                  |
|----------------------------|------------------------------|----------------------|----------------------------------|
| C Dis <u>c</u> rete        | C <u>L</u> inear             |                      |                                  |
| Temperature<br>Start T (C) | conditions <u>E</u> nd T (C) | Bamp rate<br>(C/min) | Soak time Interval T (C<br>(min) |



| 🐂 Geometry                                                                                                                                                                                      |                                                                                                                                                                      | ×              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| <ul> <li>Deformation Modes</li> <li>Single cantilever<br/>bending</li> <li>Dual cantilever<br/>bending</li> <li>3 point bending</li> <li>Shear</li> <li>Iension</li> <li>Compression</li> </ul> | Cross Section<br>© <u>R</u> ectangular<br>© <u>C</u> ircular<br>Sample Size<br>Length (mm)<br><u>W</u> idth (mm)<br>Thic <u>k</u> ness (mm)<br><u>D</u> iameter (mm) |                |
|                                                                                                                                                                                                 | < <u>B</u> ack                                                                                                                                                       | <u>N</u> ext > |



## 图 7

为了实验方便,下一步要修改软件载体 excel 表格中的 experiment 工作表中的部分参数。

首先要修改的是 Geom. Const.的函数关系式。模板中是双面剪切的几 何常数模型,经过改装后,此时系统变为单面剪切模型,所以几何关 系中要将前面的 2\*去掉,如表 1。

| Length        | 10.00     |
|---------------|-----------|
| Width         | 10.00     |
| Thickness     | 3.00      |
| Diameter      |           |
| Clamp Mass    | 8 20      |
| Goom Const    |           |
|               |           |
| Strain Factor | 3.333E+02 |

表1 几何常量函数的修改

接下来修改系统的触发及数据采集方式,实验经验证明表2中的 修改利于实验尽快完成。

表2 触发、数据采集方式延迟时间的修改

| DMA serial no.           | C on |      | #N/A     |
|--------------------------|------|------|----------|
| Excel refresh time       |      | 30   | secs     |
| Trigger mode             |      | со   | ntinuous |
| No. of averages          |      | 1    |          |
| Delay before measurement |      | 0    | mins     |
| Strain control window    |      | 0.02 |          |
| Deformation mode         |      |      | shear    |
| Single / Multi           |      |      |          |

还需修改的是各段数据采集的延迟时间。这有利于在这段时间内



改变磁场强度。以 30 秒为宜,同时为了使实验顺利进行,恒温时间可以尽量设长些,300分钟即可。其他均可按缺省值。见表 3。

表3 恒温时间和各段数据采集的延迟时间的修改

| Temperature profile |         |       |            |          |            |              |
|---------------------|---------|-------|------------|----------|------------|--------------|
| Segment             | Ramp    | End   | Ramp Data  | Isotherm | Iso. Data  | Data         |
| Time                | Rate    | Temp. | Delay Time | Period   | Delay Time | Points       |
| (min)               | (C/min) | (C)   | (sec)      | (min)    | (sec)      | (approx no.) |
| 303.9               | 5.0     | 0.0   | 0          | 300.0    | 30         | 600          |
| 0.0                 |         |       |            |          |            | 0            |
| 0.0                 |         |       |            |          |            | 0            |

最后修改的是系统识别样品为断裂的判据,为了实验过程更顺利,可将默认的 2%改为 0%。在实验数据处理时,要对一些可疑数据进行分析。见表 4。

### 表 4 样品断裂的判据的修改

| upper stiffness limit    |  | 1.0E+08            |
|--------------------------|--|--------------------|
| lower stiffness limit    |  | 2.0E+02            |
| Broken Sample %Stiffness |  | <mark>0.0</mark> % |

3、测试运行

点击软件主界面图 2 中处于活动状态的 ••• 。等待数据出现,在 出现一段数据时,在各段数据采集延迟内,尽快手动旋转旋钮调节电 流大小,等待数据再次出现。

调节电流大小可控制磁场大小,对应关系为:



| 电流/mA | 磁场强度/mT∗ |
|-------|----------|
| 100   | 0.63₽    |
| 200   | 1.28 +   |
| 300   | 2.15 🚽   |
| 400   | 2.92 🖌   |
| 500   | 3.77₽    |
| 600   | 4.72₽    |
| 700   | 5.564    |
| 800   | 6.7₽     |
| 900   | 8.73 🖌   |
| 1000  | 10.5₽    |
|       |          |

结束时按"STOP"结束。

#### 4、数据处理:

根据 raw date 中的数据,由具体实验需要,将数据做成图表。

### 5、实验结束:

实验结束后,关闭仪器,用丙酮擦拭铁芯和铁片去除粘上的胶水 和材料,盖上塑料防尘罩子,填写实验记录本。

## 仪器保养及注意事项:

1、实验前注意铁芯的水平,以及铁片的水平。

2、胶水不要粘太厚,去除胶水和材料要用丙酮,不能用刀刮。

3、当 DMA 温度过高时用冰袋降温,等温度降下来再继续实验。